Enhanced hexavalent chromium removal performance and stabilization by magnetic iron nanoparticles assisted biochar in aqueous solution: Mechanisms and application potential

被引:178
作者
Zhu, Shishu [1 ]
Huang, Xiaochen [1 ]
Wang, Dawei [2 ]
Wang, Li [1 ]
Ma, Fang [1 ]
机构
[1] Harbin Inst Technol, Sch Environm, State Key Lab Urban Water Resource & Environm, 73 Huanghe Rd, Harbin 150090, Heilongjiang, Peoples R China
[2] Virginia Commonwealth Univ, Dept Mech & Nucl Engn, Floyd Ave, Richmond, VA 23219 USA
关键词
Keywords:; Biochar; Hexavalent chromium; Nanoscale zero valent iron; Real wastewater treatment; ZERO-VALENT IRON; ELECTROPLATING WASTE-WATER; ZEROVALENT IRON; HEAVY-METALS; CR(VI) REMOVAL; GROUNDWATER REMEDIATION; ACTIVATED CARBONS; COMPOSITE; SORPTION; SOIL;
D O I
10.1016/j.chemosphere.2018.05.046
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The superiority of the nanoscale zero valent iron (nZVI) assisted biochar (BC) composites compared to traditional nZVI and its application feasibility are still unclear. This study aimed to provide valuable information for practical application. Firstly, the Fe/BC mass ratio of 2:1 during the preparation of nZVI-BC was proved obtaining the complete Cr6+ removal. Then, results revealed that the initial pH value tuned Cr6+ removal performance via varying existing Cr6+ species, surface charge, and chemical states of iron nanoparticles (NPs). Improvement of colloidal stabilization and positive surface charge attributed to enhancement of Cr6+ removal of nZVI-BC. The Cr6+ removal process was well described using pseudosecond-order kinetic. By Langmuir isotherm model, the maximum removal capacity (58.82 mg g(-1)) was determined. Moreover, the multiple evidences (XRD, XPS, FTIR, and TEM results) explained the mechanisms of Cr6+ removal (i.e. electrostatic force, complexes, metal reduction, and precipitates on the edges). Little inhibitory effect of coexisting anions (SO42-, PO43-, and NO3-) and well regeneration ability (82.2% removal efficiency after five cycles using acid washing), along with well Cr6+ removal efficiencies of real contaminated water (electroplating wastewater, tannery wastewater and groundwater) treatment, suggested nZVI-BC was considered as a superior and cost-effective choice for Cr6+ included polluted water treatment. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:50 / 59
页数:10
相关论文
共 50 条
[1]   Cr(VI) removal from aqueous solution by iron (III) hydroxide-loaded sugar beet pulp [J].
Altundogan, HS .
PROCESS BIOCHEMISTRY, 2005, 40 (3-4) :1443-1452
[2]   Effects of Rhamnolipid and Carboxymethylcellulose Coatings on Reactivity of Palladium-Doped Nanoscale Zerovalent Iron Particles [J].
Bhattachatjee, Sourjya ;
Basnet, Mohan ;
Tufenkji, Nathalie ;
Ghoshal, Subhasis .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2016, 50 (04) :1812-1820
[3]   Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles [J].
Boparai, Hardiljeet K. ;
Joseph, Meera ;
O'Carroll, Denis M. .
JOURNAL OF HAZARDOUS MATERIALS, 2011, 186 (01) :458-465
[4]   Heavy metal release due to aging effect during zero valent iron nanoparticles remediation [J].
Calderon, Blanca ;
Fullana, Andres .
WATER RESEARCH, 2015, 83 :1-9
[5]   Pyrolysis of wetland biomass waste: Potential for carbon sequestration and water remediation [J].
Cui, Xiaoqiang ;
Hao, Hulin ;
He, Zhenli ;
Stoffella, Peter J. ;
Yang, Xiaoe .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2016, 173 :95-104
[6]   Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars [J].
Cui, Xiaoqiang ;
Hao, Hulin ;
Zhang, Changkuan ;
He, Zhenli ;
Yang, Xiaoe .
SCIENCE OF THE TOTAL ENVIRONMENT, 2016, 539 :566-575
[7]   Bentonite-supported nanoscale zero-valent iron/persulfate system for the simultaneous removal of Cr(VI) and phenol from aqueous solutions [J].
Diao, Zeng-Hui ;
Xu, Xiang-Rong ;
Jiang, Dan ;
Kong, Ling-Jun ;
Sun, Yu-Xin ;
Hu, Yong-Xia ;
Hao, Qin-Wei ;
Chen, Hui .
CHEMICAL ENGINEERING JOURNAL, 2016, 302 :213-222
[8]   Simultaneous removal of Cr(VI) and phenol by persulfate activated with bentonite-supported nanoscale zero-valent iron: Reactivity and mechanism [J].
Diao, Zeng-Hui ;
Xu, Xiang-Rong ;
Chen, Hui ;
Jiang, Dan ;
Yang, Yu-Xi ;
Kong, Ling-Jun ;
Sun, Yu-Xin ;
Hu, Yong-Xia ;
Hao, Qin-Wei ;
Liu, Ling .
JOURNAL OF HAZARDOUS MATERIALS, 2016, 316 :186-193
[9]   Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution [J].
Dong, Haoran ;
Deng, Junmin ;
Xie, Yankai ;
Zhang, Cong ;
Jiang, Zhao ;
Cheng, Yujun ;
Hou, Kunjie ;
Zeng, Guangming .
JOURNAL OF HAZARDOUS MATERIALS, 2017, 332 :79-86
[10]   The use of zero-valent iron for groundwater remediation and wastewater treatment: A review [J].
Fu, Fenglian ;
Dionysiou, Dionysios D. ;
Liu, Hong .
JOURNAL OF HAZARDOUS MATERIALS, 2014, 267 :194-205