A SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR FIRST ORDER HYPERBOLIC SYSTEMS

被引:0
作者
Zhang, Tie [1 ,2 ]
Liu, Jingna [1 ,2 ]
机构
[1] Northeastern Univ, Dept Math, Shenyang 110004, Peoples R China
[2] Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110004, Peoples R China
关键词
discontinuous Galerkin method; first-order hyperbolic system; semi-explicit scheme; stability and error estimate; FINITE-ELEMENT METHODS; CONVERGENCE; EQUATIONS;
D O I
10.4134/JKMS.2014.51.4.665
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new space-time discontinuous Galerkin (DG) method for solving the time dependent, positive symmetric hyperbolic systems. The main feature of this DG method is that the discrete equations can be solved semi-explicitly, layer by layer, in time direction. For the partition made of triangle or rectangular meshes, we give the stability analysis of this DG method and derive the optimal error estimates in the DG-norm which is stronger than the L-2-norm. As' application, the wave equation is considered and some numerical experiments are provided to illustrate the validity of this DG method.
引用
收藏
页码:665 / 678
页数:14
相关论文
共 50 条
  • [11] Discontinuous Galerkin discretization in time of systems of second-order nonlinear hyperbolic equations
    Shao, Aili
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2022, 56 (06) : 2255 - 2296
  • [12] Space-time discontinuous Galerkin approximation of acoustic waves with point singularities
    Bansal, Pratyuksh
    Moiola, Andrea
    Perugia, Ilaria
    Schwab, Christoph
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (03) : 2056 - 2109
  • [13] A space-time discontinuous Galerkin method for the solution of the wave equation in the time domain
    Petersen, Steffen
    Farhat, Charbel
    Tezaur, Radek
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 78 (03) : 275 - 295
  • [14] A SPACE-TIME DISCONTINUOUS GALERKIN SPECTRAL ELEMENT METHOD FOR THE STEFAN PROBLEM
    Pei, Chaoxu
    Sussman, Mark
    Hussaini, M. Yousuff
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (09): : 3595 - 3622
  • [15] A SPACE-TIME TREFFTZ DISCONTINUOUS GALERKIN METHOD FOR THE LINEAR SCHRODINGER EQUATION
    GOMEZ, S. E. R. G. I. O.
    MOIOLA, A. N. D. R. E. A.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (02) : 688 - 714
  • [16] A Space-Time Interior Penalty Discontinuous Galerkin Method for the Wave Equation
    Shukla, Poorvi
    van der Vegt, J. J. W.
    [J]. COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2022, 4 (03) : 904 - 944
  • [17] A splitting mixed space-time discontinuous Galerkin method for parabolic problems
    He, Siriguleng
    Li, Hong
    Liu, Yang
    Fang, Zhichao
    Yang, Jingbo
    Jia, Xianbiao
    [J]. INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTATIONAL MODELING AND SIMULATION, 2012, 31 : 1050 - 1059
  • [18] Efficient Preconditiones for a Shock Capturing Space-Time Discontinuous Galerkin Method for Systems of Conservation Laws
    Hiltebrand, Andreas
    Mishra, Siddhartha
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2015, 17 (05) : 1320 - 1359
  • [19] A space-time discontinuous Galerkin method for linear convection-dominated Sobolev equations
    Sun, Tongjun
    Ma, Keying
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2009, 210 (02) : 490 - 503
  • [20] A SPACE-TIME DISCONTINUOUS GALERKIN TREFFTZ METHOD FOR TIME DEPENDENT MAXWELL'S EQUATIONS
    Egger, Herbert
    Kretzschmar, Fritz
    Schnepp, Sascha M.
    Weiland, Thomas
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (05) : B689 - B711