Combining particle MCMC with Rao-Blackwellized Monte Carlo data association for parameter estimation in multiple target tracking

被引:15
作者
Kokkala, Juho [1 ]
Sarkka, Simo [1 ]
机构
[1] Aalto Univ, Espoo, Finland
基金
芬兰科学院;
关键词
Multiple target tracking; Rao-Blackwellized Monte Carlo data association; Particle filtering; Sequential Monte Carlo; Particle MCMC; Parameter estimation; BAYESIAN-APPROACH; STATE ESTIMATION; FILTER; ALGORITHM; MODELS;
D O I
10.1016/j.dsp.2015.04.004
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We consider state and parameter estimation in multiple target tracking problems with data association uncertainties and unknown number of targets. We show how the problem can be recast into a conditionally linear Gaussian state-space model with unknown parameters and present an algorithm for computationally efficient inference on the resulting model. The proposed algorithm is based on combining the Rao-Blackwellized Monte Carlo data association algorithm with particle Markov chain Monte Carlo algorithms to jointly estimate both parameters and data associations. Both particle marginal Metropolis-Hastings and particle Gibbs variants of particle MCMC are considered. We demonstrate the performance of the method both using simulated data and in a real-data case study of using multiple target tracking to estimate the brown bear population in Finland. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:84 / 95
页数:12
相关论文
共 66 条
  • [1] Abbas M.A., 2011, THESIS
  • [2] RANDOM SAMPLING APPROACH TO STATE ESTIMATION IN SWITCHING ENVIRONMENTS
    AKASHI, H
    KUMAMOTO, H
    [J]. AUTOMATICA, 1977, 13 (04) : 429 - 434
  • [3] Particle methods for change detection, system identification, and control
    Andrieu, C
    Doucet, A
    Singh, SS
    Tadic, VB
    [J]. PROCEEDINGS OF THE IEEE, 2004, 92 (03) : 423 - 438
  • [4] Particle Markov chain Monte Carlo methods
    Andrieu, Christophe
    Doucet, Arnaud
    Holenstein, Roman
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 : 269 - 342
  • [5] [Anonymous], 2013, Bayesian data analysis, third edition
  • [6] Bar-Shalom Y., 2004, Estimation with applications to tracking and navigation: Theory algorithms and software
  • [7] Blackman S., 1999, Design and Analysis of Modern Tracking Systems
  • [8] Multiple hypothesis tracking for multiple target tracking
    Blackman, SS
    [J]. IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE, 2004, 19 (01) : 5 - 18
  • [9] Bugallo MF, 2007, AEROSP CONF PROC, P1882
  • [10] Particle Learning and Smoothing
    Carvalho, Carlos M.
    Johannes, Michael S.
    Lopes, Hedibert F.
    Polson, Nicholas G.
    [J]. STATISTICAL SCIENCE, 2010, 25 (01) : 88 - 106