THE AVERAGE DEGREE OF AN IRREDUCIBLE CHARACTER OF A FINITE GROUP

被引:29
作者
Isaacs, I. M. [1 ]
Loukaki, Maria [2 ]
Moreto, Alexander [3 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Univ Crete, Dept Math, GR-7140 Iraklion, Greece
[3] Univ Valencia, Dept Algebra, E-46100 Valencia, Spain
关键词
Finite Group; Conjugacy Class; Maximal Subgroup; Abelian Subgroup; Solvable Radical;
D O I
10.1007/s11856-013-0013-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a finite group G, we write acd(G) to denote the average of the degrees of the irreducible characters of G. We show that if acd(G) <= 3, then G is solvable. Also, if acd(G) < 3/2, then G is supersolvable, and if acd(G) < 4/3, then G is nilpotent.
引用
收藏
页码:55 / 67
页数:13
相关论文
共 7 条
[1]  
[Anonymous], 1967, ENDLICHE GRUPPEN
[2]  
Ernest John A., 1961, Trans. Amer. Math. Soc., V99, P499, DOI DOI 10.2307/1993559
[3]   NUMBER CONJUGACY CLASSES IN FINITE GROUP [J].
GALLAGHER, PX .
MATHEMATISCHE ZEITSCHRIFT, 1970, 118 (03) :175-+
[4]   On the commuting probability in finite groups (vol 300, pg 509, 2006) [J].
Guralnick, R. M. ;
Robinson, G. R. .
JOURNAL OF ALGEBRA, 2008, 319 (04) :1822-1822
[5]   On the commuting probability in finite groups [J].
Guralnick, Robert M. ;
Robinson, Geoffrey R. .
JOURNAL OF ALGEBRA, 2006, 300 (02) :509-528
[6]  
Isaacs I.M., 2006, CHARACTER THEORY FIN
[7]   Character degree sums in finite nonsolvable groups [J].
Magaard, Kay ;
Hung P. Tong-Viet .
JOURNAL OF GROUP THEORY, 2011, 14 (01) :53-57