The circular Morse-Smale characteristic of closed surfaces

被引:0
作者
Andrica, Dorin [1 ]
Mangra, Dana [1 ]
Pintea, Cornel [1 ]
机构
[1] Univ Babes Bolyai, Dept Math, Cluj Napoca 400084, Romania
来源
BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE | 2014年 / 57卷 / 03期
关键词
Morse functions; circular Morse-Smale characteristic; characteristic points; SIZE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we first compute the circular version of the Morse-Smale characteristic of all closed surfaces. We also observe that the critical points of the real valued height functions alongside those of some S-1 valued functions on a surface Sigma subset of R-3, are the characteristic points with respect to some involutive distributions. We finally study the size of the characteristic set of the compact orientable surface of genus g, embedded in a certain way in the first Heisenberg group, with respect to the horizontal distribution of the Heisenberg group.
引用
收藏
页码:235 / 242
页数:8
相关论文
共 22 条
[1]  
Andrica D., 2012, ESSAYS MATH APPL
[2]  
Andrica D., 2010, ACTA U APULENSIS, V22, P215
[3]  
Andrica D, 2005, CRITICAL POINT THEOR
[4]  
Andrica D, 2010, ANALELE U ORADEA FAS, V17, P23
[5]  
[Anonymous], 1965, MATH NOTES+
[6]  
Balogh ZM, 2003, J REINE ANGEW MATH, V564, P63
[7]   Size of Tangencies to Non-involutive Distributions [J].
Balogh, Zoltan M. ;
Pintea, Cornel ;
Rohner, Heiner .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2011, 60 (06) :2061-2092
[8]  
Chern S., 1958, AM J MATH, V5, P5
[9]   ON THE TOTAL CURVATURE OF IMMERSED MANIFOLDS [J].
CHERN, SS ;
LASHOF, RK .
AMERICAN JOURNAL OF MATHEMATICS, 1957, 79 (02) :306-318
[10]   CONTACT 3-MANIFOLDS 20 YEARS SINCE MARTINET,J. WORK [J].
ELIASHBERG, Y .
ANNALES DE L INSTITUT FOURIER, 1992, 42 (1-2) :165-192