Global minimizers for a p-Ginzburg-Landau-type energy in R2

被引:15
作者
Almog, Yaniv [2 ]
Berlyand, Leonid [3 ]
Golovaty, Dmitry [4 ]
Shafrir, Itai [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
[2] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[3] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[4] Univ Akron, Dept Theoret & Appl Math, Akron, OH 44325 USA
关键词
p-Ginzburg-Landau energy; Global minimizer; PRESCRIBED DEGREES; DOMAIN;
D O I
10.1016/j.jfa.2008.09.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a p > 2, we prove existence of global minimizers for a p-Ginzburg-Landau-type energy over maps on R-2 with degree d = 1 at infinity. For the analogous problem on the half-plane we prove existence of a global minimizer when p is close to 2. The key ingredient of our proof is the degree reduction argument that allows us to construct a map of degree d = 1 from an arbitrary map of degree d > I without increasing the p-Ginzburg-Landau energy. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:2268 / 2290
页数:23
相关论文
共 12 条
[1]  
[Anonymous], 1966, GRUNDLEHREN MATH WIS
[2]  
[Anonymous], 1998, PARTIAL DIFFERENTIAL
[3]   Ginzburg-Landau minimizers with prescribed degrees: dependence on domain [J].
Berlyand, L ;
Mironescu, P .
COMPTES RENDUS MATHEMATIQUE, 2003, 337 (06) :375-380
[4]  
BERLYAND L, 1999, P IUTAM 99 4 S SYDN
[5]   Ginzburg-Landau minimizers with prescribed degrees. Capacity of the domain and emergence of vortices [J].
Berlyand, Leonid ;
Mironescu, Petru .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 239 (01) :76-99
[6]  
BETHUEL F, 2004, GINZBURG LANDAU VORT
[7]   QUANTIZATION EFFECT FOR DELTA-U=U(1 - VERTICAL-BAR-U-VERTICAL-BAR(2)) IN R(2) [J].
BREZIS, H ;
MERLE, F ;
RIVIERE, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1994, 126 (01) :35-58
[8]  
BREZIS H, 1983, COLLECT MAITRISE MAT
[9]   ON THE REGULARITY OF THE MINIMA OF VARIATIONAL INTEGRALS [J].
GIAQUINTA, M ;
GIUSTI, E .
ACTA MATHEMATICA, 1982, 148 :31-46
[10]   On uniqueness of vector-valued minimizers of the Ginzburg-Landau functional in annular domains [J].
Golovaty, D ;
Berlyand, L .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2002, 14 (02) :213-232