Graphene-Ionic Liquid Interfacial Potential Drop from Density Functional Theory-Based Molecular Dynamics Simulations

被引:25
作者
Ers, Heigo [1 ]
Lembinen, Meeri [2 ]
Misin, Maksim [1 ]
Seitsonen, Ari P. [3 ]
Fedorov, Maxim, V [4 ,5 ]
Ivanistsev, Vladislav B. [1 ]
机构
[1] Univ Tartu, Inst Chem, EE-50411 Tartu, Estonia
[2] Univ Tartu, Inst Phys, EE-50411 Tartu, Estonia
[3] Sorbonne Univ, CNRS, Paris Sci & Lettres, F-75005 Paris, France
[4] Skolkovo Inst Sci & Technol, Moscow 121205, Russia
[5] Strathclyde Univ, Scottish Univ Phys Alliance SUPA, Dept Phys, Glasgow G4 0NG, Lanark, Scotland
关键词
ELECTRICAL DOUBLE-LAYER; SURFACE-CHARGE; ELECTRODE; ENERGY; ADSORPTION; TETRAFLUOROBORATE; CAPACITANCE; 1ST-PRINCIPLES; DISPERSION; TRANSPORT;
D O I
10.1021/acs.jpcc.0c02964
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ionic liquids (ILs) are promising electrolytes for electrochemical applications due to their remarkable stability and high charge density. Molecular dynamics simulations are essential for a better understanding of the complex phenomena occurring at the electrode-IL interface. In this work, we have studied the interface between graphene and 1-ethyl-3-methyl-imidazolium tetrafluoroborate IL by density functional theory-based molecular dynamics (DFT-MD) simulations at variable surface charge densities. We have disassembled the electrical double layer potential drop into two main components: one involving atomic charges and the other dipoles. The former component arises due to the reorganization of ionic liquid and the latter due to the electronic polarization of the surface. It is related to concepts hotly debated in the literature, such as the Thomas-Fermi screening length, effective surface charge plane, and quantum capacitance.
引用
收藏
页码:19548 / 19555
页数:8
相关论文
共 84 条
[1]   Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers [J].
Abraham, Mark James ;
Murtola, Teemu ;
Schulz, Roland ;
Páll, Szilárd ;
Smith, Jeremy C. ;
Hess, Berk ;
Lindah, Erik .
SoftwareX, 2015, 1-2 :19-25
[2]   Electrochemical reduction of an anion for ionic-liquid molecules on a lithium electrode studied by first-principles calculations [J].
Ando, Yasunobu ;
Kawamura, Yoshiumi ;
Ikeshoji, Tamio ;
Otani, Minoru .
CHEMICAL PHYSICS LETTERS, 2014, 612 :240-244
[3]  
[Anonymous], 2017, Chargemol program for performing DDEC analysis
[4]  
[Anonymous], 1999, ELECTROCHEMICAL SUPE
[5]   Molecular Dynamics Simulations of Ionic Liquids and Electrolytes Using Polarizable Force Fields [J].
Bedrov, Dmitry ;
Piquemal, Jean-Philip ;
Borodin, Oleg ;
MacKerell, Alexander D., Jr. ;
Roux, Benoit ;
Schroeder, Christian .
CHEMICAL REVIEWS, 2019, 119 (13) :7940-7995
[6]   New Insights into the Relationship between Ion-Pair Binding Energy and Thermodynamic and Transport Properties of Ionic Liquids [J].
Bernard, Uditha L. ;
Izgorodina, Ekaterina I. ;
MacFarlane, Douglas R. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (48) :20472-20478
[7]   Electrode Models for Ionic Liquid-Based Capacitors [J].
Breitsprecher, Konrad ;
Szuttor, Kai ;
Holm, Christian .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (39) :22445-22451
[8]   Canonical sampling through velocity rescaling [J].
Bussi, Giovanni ;
Donadio, Davide ;
Parrinello, Michele .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (01)
[9]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[10]   Alignment of electronic energy levels at electrochemical interfaces [J].
Cheng, Jun ;
Sprik, Michiel .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (32) :11245-11267