Degradation of Norfloxacin in an Aqueous Solution by the Nanoscale Zero-Valent Iron-Activated Persulfate Process

被引:13
|
作者
Zhang, Yanchang [1 ]
Zhao, Lin [2 ]
Yang, Yongkui [2 ]
Sun, Peizhe [2 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Tianjin 300350, Peoples R China
[2] Tianjin Univ, Sch Environm Sci & Engn, Tianjin 300350, Peoples R China
基金
中国国家自然科学基金;
关键词
FLUOROQUINOLONE ANTIBIOTICS; ENHANCED DEGRADATION; SYSTEM OPTIMIZATION; ORGANIC-COMPOUNDS; WASTE-WATER; OXIDATION; REMOVAL; MECHANISM; NANOPARTICLES; KINETICS;
D O I
10.1155/2020/3286383
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this study, nanoscale zero-valent iron (nZVI) was synthesized and used to activate persulfate (PS) for the degradation of norfloxacin (NOR). The nZVI/PS system exhibited a high reactivity towards NOR, and the degradation efficiency of NOR (100 mg/L) reached 93.8% with 0.1 g/L nZVI, 12 mM PS, and an initial pH of 7.0 within 7 min. The NOR degradation followed a pseudo-first-order kinetic model, and the effects of parameters such as nZVI dosage, PS concentration, initial pH, and temperature were investigated systematically. Overloading of nZVI lowered the degradation efficiency owing to the quenching effect of excessive Fe2+. The higher PS concentration and temperature favored the degradation of NOR. The influence of pH was not obvious, and the degradation was effective in a wide pH range. In addition, the radical quenching experiments and electron paramagnetic resonance (EPR) indicated that both sulfate radical (SO4) and hydroxyl radical (OH) were the dominant radicals in the degradation process, in which the latter played a more important role. Finally, three degradation pathways were proposed based on the result of intermediates identified by liquid chromatography-mass spectrometry. Overall, this study indicated that the nZVI/PS system could provide a promising alternative for NOR wastewater treatment.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Oxidative Degradation of Quinoline Using Nanoscale Zero-Valent Iron Supported by Granular Activated Carbon
    Gosu, Vijayalakshmi
    Gurjar, Bhola Ram
    Zhang, Tian C.
    Surampalli, Rao Y.
    JOURNAL OF ENVIRONMENTAL ENGINEERING, 2016, 142 (01)
  • [32] Removal of Cr(VI) from Aqueous Solution by Nanoscale Zero-Valent Iron Grafted on Acid-Activated Attapulgite
    Quan, Guixiang
    Zhang, Jing
    Guo, Jing
    Lan, Yeqing
    WATER AIR AND SOIL POLLUTION, 2014, 225 (06)
  • [33] Removal of chloramphenicol from aqueous solution by nanoscale zero-valent iron particles
    Xia, Siqing
    Gu, Zaoli
    Zhang, Zhiqiang
    Zhang, Jiao
    Hermanowicz, Slawomir W.
    CHEMICAL ENGINEERING JOURNAL, 2014, 257 : 98 - 104
  • [34] Reductive degradation of nitrobenzene in aqueous solution by zero-valent iron
    Mu, Y
    Yu, HQ
    Zheng, JC
    Zhang, SJ
    Sheng, GP
    CHEMOSPHERE, 2004, 54 (07) : 789 - 794
  • [35] Sonocatalytic Degradation of p-Chlorophenol by Nanoscale Zero-valent Copper Activated Persulfate under Ultrasonic Irradiation in Aqueous Solutions
    Sharifi, Z.
    Asgari, G.
    Seid-mohammadi, A.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2020, 33 (06): : 1061 - 1069
  • [36] Effective degradation of fenitrothion by zero-valent iron powder (Fe0) activated persulfate in aqueous solution: Kinetic study and product identification
    Liu, Hongxia
    Yao, Jiayi
    Wang, Lianhong
    Wang, Xinghao
    Qu, Ruijuan
    Wang, Zunyao
    CHEMICAL ENGINEERING JOURNAL, 2019, 358 : 1479 - 1488
  • [37] Phosphate removal from aqueous solutions by nanoscale zero-valent iron
    Wu, Donglei
    Shen, Yanhong
    Ding, Aqiang
    Qiu, Mengyu
    Yang, Qi
    Zheng, Shuangshuang
    ENVIRONMENTAL TECHNOLOGY, 2013, 34 (18) : 2663 - 2669
  • [38] Degradation of amaranth by persulfate activated with zero-valent iron: influencing factors, response surface modeling
    Yu, Changye
    Lu, Xian
    Lu, Jinyu
    Zhang, Yinjiang
    SN APPLIED SCIENCES, 2023, 5 (01):
  • [39] Aqueous phosphate removal using nanoscale zero-valent iron
    Almeelbi, Talal
    Bezbaruah, Achintya
    JOURNAL OF NANOPARTICLE RESEARCH, 2012, 14 (07)
  • [40] Degradation mechanism of Bisphenol S via hydrogen peroxide/persulfate activated by sulfidated nanoscale zero valent iron
    Xiong, Yehan
    Zhou, Ting
    Bao, Jianguo
    Du, Jiangkun
    Faheem, Muhammad
    Luo, Liting
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (35) : 83545 - 83557