Degradation of Norfloxacin in an Aqueous Solution by the Nanoscale Zero-Valent Iron-Activated Persulfate Process

被引:17
作者
Zhang, Yanchang [1 ]
Zhao, Lin [2 ]
Yang, Yongkui [2 ]
Sun, Peizhe [2 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Tianjin 300350, Peoples R China
[2] Tianjin Univ, Sch Environm Sci & Engn, Tianjin 300350, Peoples R China
基金
中国国家自然科学基金;
关键词
FLUOROQUINOLONE ANTIBIOTICS; ENHANCED DEGRADATION; SYSTEM OPTIMIZATION; ORGANIC-COMPOUNDS; WASTE-WATER; OXIDATION; REMOVAL; MECHANISM; NANOPARTICLES; KINETICS;
D O I
10.1155/2020/3286383
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this study, nanoscale zero-valent iron (nZVI) was synthesized and used to activate persulfate (PS) for the degradation of norfloxacin (NOR). The nZVI/PS system exhibited a high reactivity towards NOR, and the degradation efficiency of NOR (100 mg/L) reached 93.8% with 0.1 g/L nZVI, 12 mM PS, and an initial pH of 7.0 within 7 min. The NOR degradation followed a pseudo-first-order kinetic model, and the effects of parameters such as nZVI dosage, PS concentration, initial pH, and temperature were investigated systematically. Overloading of nZVI lowered the degradation efficiency owing to the quenching effect of excessive Fe2+. The higher PS concentration and temperature favored the degradation of NOR. The influence of pH was not obvious, and the degradation was effective in a wide pH range. In addition, the radical quenching experiments and electron paramagnetic resonance (EPR) indicated that both sulfate radical (SO4) and hydroxyl radical (OH) were the dominant radicals in the degradation process, in which the latter played a more important role. Finally, three degradation pathways were proposed based on the result of intermediates identified by liquid chromatography-mass spectrometry. Overall, this study indicated that the nZVI/PS system could provide a promising alternative for NOR wastewater treatment.
引用
收藏
页数:12
相关论文
共 68 条
[1]   Fluoroquinolones antibiotics adsorption onto microporous activated carbon from lignocellulosic biomass by microwave pyrolysis [J].
Ahmed, Muthanna J. ;
Theydan, Samar K. .
JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2014, 45 (01) :219-226
[2]   Treatment of Organic Compounds by Activated Persulfate Using Nanoscale Zerovalent Iron [J].
Al-Shamsi, Mohammed A. ;
Thomson, Neil R. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2013, 52 (38) :13564-13571
[3]   Performance of aerobic granular sludge in a sequencing batch bioreactor exposed to ofloxacin, norfloxacin and ciprofloxacin [J].
Amorim, Catarina L. ;
Maia, Alexandra S. ;
Mesquita, Raquel B. R. ;
Rangel, Antonio O. S. S. ;
van Loosdrecht, Mark C. M. ;
Tiritan, Maria Elizabeth ;
Castro, Paula M. L. .
WATER RESEARCH, 2014, 50 :101-113
[4]   Removal of phenol by heterogenous photo electro Fenton-like process using nano-zero valent iron [J].
Babuponnusami, Arjunan ;
Muthukumar, Karuppan .
SEPARATION AND PURIFICATION TECHNOLOGY, 2012, 98 :130-135
[5]   4-Chlorophenol degradation using ultrasound/peroxymonosulfate/nanoscale zero valent iron: Reusability, identification of degradation intermediates and potential application for real wastewater [J].
Barzegar, Gelavizh ;
Jorfi, Sahand ;
Zarezade, Vahid ;
Khatebasreh, Masoumeh ;
Mehdipour, Fayyaz ;
Ghanbari, Farshid .
CHEMOSPHERE, 2018, 201 :370-379
[6]   Comparison of the occurrence of antibiotics in four full-scale wastewater treatment plants with varying designs and operations [J].
Batt, Angela L. ;
Kim, Sungpyo ;
Aga, Diana S. .
CHEMOSPHERE, 2007, 68 (03) :428-435
[7]   Electro-assisted heterogeneous activation of persulfate by Fe/SBA-15 for the degradation of Orange II [J].
Cai, Chun ;
Zhang, Zhuoyue ;
Zhang, Hui .
JOURNAL OF HAZARDOUS MATERIALS, 2016, 313 :209-218
[8]   Removal of co-contaminants Cu (II) and nitrate from aqueous solution using kaolin-Fe/Ni nanoparticles [J].
Cai, Xiang ;
Gao, Ying ;
Sun, Qian ;
Chen, Zuliang ;
Megharaj, Mallavarapu ;
Naidu, Ravendra .
CHEMICAL ENGINEERING JOURNAL, 2014, 244 :19-26
[9]   Rational design and synthesis of hollow Co3O4@Fe2O3 core-shell nanostructure for the catalytic degradation of norfloxacin by coupling with peroxymonosulfate [J].
Chen, Liwei ;
Zuo, Xu ;
Yang, Shengjiong ;
Cai, Tianming ;
Ding, Dahu .
CHEMICAL ENGINEERING JOURNAL, 2019, 359 :373-384
[10]   Highly-efficient removal of norfloxacin with nanoscale zero-valent copper activated persulfate at mild temperature [J].
Deng, Jing ;
Xu, Mengyuan ;
Chen, Yijing ;
Li, Jun ;
Qiu, Chungen ;
Li, Xueyan ;
Zhou, Shiqing .
CHEMICAL ENGINEERING JOURNAL, 2019, 366 :491-503