A decomposition of the bifractional Brownian motion and some applications

被引:67
作者
Lei, Pedro [1 ]
Nualart, David [1 ]
机构
[1] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
关键词
D O I
10.1016/j.spl.2008.10.009
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we have shown a decomposition of the bifractional Brownian motion with parameters H. K into the sum of a fractional Brownian motion with Hurst parameter HK plus a stochastic process with absolutely continuous trajectories. Some applications of this decomposition are discussed. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:619 / 624
页数:6
相关论文
共 14 条
[1]   Stochastic analysis of the fractional Brownian motion [J].
Decreusefond, L ;
Üstünel, AS .
POTENTIAL ANALYSIS, 1999, 10 (02) :177-214
[2]   Multidimensional bifractional Brownian motion: Ito and Tanaka formulas [J].
Es-Sebaiy, Khalifa ;
Tudor, Ciprian A. .
STOCHASTICS AND DYNAMICS, 2007, 7 (03) :365-388
[3]  
Houdr C., 2003, Contemp. Math., V336, P195, DOI DOI 10.1090/CONM/336
[4]   On the Wiener integral with respect to the fractional Brownian motion on an interval [J].
Jolis, Maria .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 330 (02) :1115-1127
[5]  
Kahane J-P., 1985, SOME RANDOM SERIES F
[6]  
KAHANE JP, 1981, ADV MATH B, V7, P417
[7]   Wiener integrals, Malliavin calculus and covariance measure structure [J].
Kruk, Ida ;
Russo, Francesco ;
Tudor, Ciprian A. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 249 (01) :92-142
[8]   SMALL VALUES OF GAUSSIAN-PROCESSES AND FUNCTIONAL LAWS OF THE ITERATED LOGARITHM [J].
MONRAD, D ;
ROOTZEN, H .
PROBABILITY THEORY AND RELATED FIELDS, 1995, 101 (02) :173-192
[9]  
Nualart D, 2003, CONT MATH, V336, P3
[10]  
Nualart David, 2006, The Malliavin Calculus and Related Topics, V1995