A new existence theory for positive periodic solutions to functional differential equations with impulse effects

被引:18
作者
Li, Xiaoyue [1 ]
Zhang, Xiaoying
Jiang, Daqing
机构
[1] NE Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
[2] Changchun Univ, Appl Sci Coll, Changchun 130022, Peoples R China
[3] NE Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
基金
中国国家自然科学基金; 俄罗斯科学基金会;
关键词
functional differential equation; impulse; positive periodic solution; fixed-point theorem; existence;
D O I
10.1016/j.camwa.2006.02.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The principle of this paper is to deal with a new existence theory for positive periodic solutions to a kind of nonautonomous functional differential equations with impulse actions at fixed moments. Easily verifiable sufficient criteria are established. The approach is based on the fixed-point theorem in cones. The paper extends some previous results and obtains some new results. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1761 / 1772
页数:12
相关论文
共 24 条
[1]   EXPONENTIAL STABILITY OF LINEAR DELAY IMPULSIVE DIFFERENTIAL-EQUATIONS [J].
ANOKHIN, A ;
BEREZANSKY, L ;
BRAVERMAN, E .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 193 (03) :923-941
[2]  
Bainov D, 1993, IMPULSIVE DIFFERENTI
[3]  
Bainov D.D., 1989, Systems with Impulse Effect
[4]   STABILITY UNDER PERSISTENT DISTURBANCES OF IMPULSIVE DIFFERENTIAL-DIFFERENCE EQUATIONS OF NEUTRAL TYPE [J].
BAINOV, DD ;
COVACHEV, VC ;
STAMOVA, IM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 187 (03) :790-808
[5]  
Deimling K., 2010, NONLINEAR FUNCTIONAL, DOI DOI 10.1007/978-3-662-00547-7
[6]  
GOPALSAMY K, 1994, B I MATH ACAD SINICA, V22, P341
[7]   NICHOLSON BLOWFLIES REVISITED [J].
GURNEY, WSC ;
BLYTHE, SP ;
NISBET, RM .
NATURE, 1980, 287 (5777) :17-21
[8]  
JOSEPH W, 1994, DIFF EQUAT, V2, P11
[9]  
Lakshmikantham V., 1989, Series In Modern Applied Mathematics, V6
[10]   Positive solutions of semilinear differential equations with singularities [J].
Lan, K ;
Webb, JRL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 148 (02) :407-421