Additive manufacturing of soft magnetic materials and components

被引:163
作者
Goll, D. [1 ]
Schuller, D. [1 ]
Martinek, G. [1 ]
Kunert, T. [1 ]
Schurr, J. [1 ]
Sinz, C. [1 ]
Schubert, T. [1 ]
Bernthaler, T. [1 ]
Riegel, H. [2 ]
Schneider, G. [1 ]
机构
[1] Aalen Univ, Mat Res Inst, Beethovenstr 1, D-73430 Aalen, Germany
[2] Aalen Univ, Laser Applicat Ctr, Beethovenstr 1, D-73430 Aalen, Germany
关键词
Additive manufacturing; Laser powder bed fusion; Soft magnetic materials; Soft magnetic components; Electric motor; LASER; MICROSTRUCTURE; SI;
D O I
10.1016/j.addma.2019.02.021
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Additive manufacturing of soft magnetic materials and components based on laser powder bed fusion (L-PBF) offers new opportunities for soft magnetic core materials in efficient energy converters. For more favorable material compositions like FeSi6.7 (strategy 1) with larger electrical resistivity and close-to-zero magnetostriction a maximum permeability of mu(max) = 31,000, minimum coercivity of H-c = 16 A/m and hysteresis losses of 0.7 W/kg at 1 T and 50 Hz have been realized. To further reduce eddy current losses significantly, novel topological structures like inner slits (strategy 2) and multilayered structures of alternating layers of electrically insulating material and soft magnetic material (strategy 3) are suggested. Feasibility, functionality and potential of the different strategies (and combinations thereof) are discussed based on first prototypes and supporting simulations. The results are compared to conventional electrical steel and SMC (soft magnetic composites).
引用
收藏
页码:428 / 439
页数:12
相关论文
共 39 条
[21]  
Letenneur M, 2017, J MANUF MATER PROC, V1, DOI 10.3390/jmmp1020023
[22]   Electrical and thermoelectric properties of the intermetallic FeGa3 [J].
Lue, CS ;
Lai, WJ ;
Kuo, YK .
JOURNAL OF ALLOYS AND COMPOUNDS, 2005, 392 (1-2) :72-75
[23]   Thermal and electrical transport properties of ordered FeAl2 [J].
Lue, CS ;
Kuo, YK .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2003, 15 (06) :877-882
[24]  
Metsa-Kortelainen S., 2016, NAFEMS Exploring the Design Freedom of Additive Manufacturing through Simulation
[25]   Laser Additive Manufacturing of Magnetic Materials [J].
Mikler, C. V. ;
Chaudhary, V. ;
Borkar, T. ;
Soni, V. ;
Jaeger, D. ;
Chen, X. ;
Contieri, R. ;
Ramanujan, R. V. ;
Banerjee, R. .
JOM, 2017, 69 (03) :532-543
[26]  
Morimoto M., 2011, 2011 IEEE Ninth International Conference on Power Electronics and Drive Systems (PEDS 2011), P162, DOI 10.1109/PEDS.2011.6147240
[27]  
Moses A. J., 2007, HDB MAGNETISM MAGNET, P1926
[28]   Energy efficient electrical steels: Magnetic performance prediction and optimization [J].
Moses, Anthony John .
SCRIPTA MATERIALIA, 2012, 67 (06) :560-565
[29]   Investigation of the influence of different cutting procedures on the global and local magnetic properties of non-oriented electrical steel [J].
Naumoski, H. ;
Riedmueller, B. ;
Minkow, A. ;
Herr, U. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2015, 392 :126-133
[30]  
Palousek D, 2017, MM science journal, P1738, DOI [10.17973/MMSJ.2017_02_2016184, DOI 10.17973/MMSJ.2017_02_2016184]