A quantitative assessment of the production of •OH and additional oxidants in the dark Fenton reaction: Fenton degradation of aromatic amines

被引:45
作者
Minero, Claudio [1 ]
Lucchiari, Mirco [1 ]
Maurino, Valter [1 ]
Vione, Davide [1 ]
机构
[1] Univ Turin, Dipartimento Chim, I-10125 Turin, Italy
来源
RSC ADVANCES | 2013年 / 3卷 / 48期
关键词
HYDROXYL RADICALS; SONOCHEMICAL DEGRADATION; VALENT IRON; OXIDATION; REAGENT; PH; MINERALIZATION; HYDROCARBONS; ENHANCEMENT; REDUCTION;
D O I
10.1039/c3ra44585b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper reports the results of a kinetic study into the transformation of 2,4- and 3,4-dichloroaniline (2,4-DCA, 3,4-DCA) and of methyl yellow (MY) with the Fenton reagent in aqueous solution. All the substrates can be degraded in the presence of Fe(II) + H2O2, but the reaction between Fe(II) and H2O2 causes substrate degradation and Fe(II) oxidation within seconds under the adopted conditions. The HPLC, GC-MS and IC analyses only allow the monitoring of the reaction after all Fe(II) has been consumed, when degradation proceeds more slowly via Fe(III) reduction to Fe(II). Substrate degradation in the first part of the reaction was studied by stopped-flow spectrophotometry, using MY as substrate. The results are consistent with a reaction involving (OH)-O-center dot, where both Fe(II) and H2O2 compete with MY for the hydroxyl radical. However, the experimental data indicate that (OH)-O-center dot is unlikely to be the only product of the reaction between Fe(II) and H2O2. Another species, possibly the ferryl ion (FeO2+), is formed as well but has a negligible role in MY degradation. The Fenton reaction would thus yield both (OH)-O-center dot (about 60% at pH 2) and ferryl (about 40%), and the 60 : 40 branching ratio between (OH)-O-center dot and the other species is compatible with additional data here reported concerning the degradation of 2,4-DCA and 3,4-DCA in the first ferrous step of the Fenton reaction. The reported findings will hopefully indicate a way out of a long-lasting controversy concerning the mechanism of the Fenton process, also suggesting an approach to quantitatively determine the formation yields of the reactive species as well as a strategy to identify the reactant that is actually involved in substrate transformation.
引用
收藏
页码:26443 / 26450
页数:8
相关论文
共 47 条
[1]   REACTIONS OF FERROUS AND FERRIC IONS WITH HYDROGEN PEROXIDE .1. THE FERROUS ION REACTION [J].
BARB, WG ;
BAXENDALE, JH ;
GEORGE, P ;
HARGRAVE, KR .
TRANSACTIONS OF THE FARADAY SOCIETY, 1951, 47 (05) :462-500
[2]  
Barbusinski K, 2009, ECOL CHEM ENG S, V16, P347
[3]   pH-induced mechanistic changeover from hydroxyl radicals to iron(IV) in the Fenton reaction [J].
Bataineh, Hajem ;
Pestovsky, Oleg ;
Bakac, Andreja .
CHEMICAL SCIENCE, 2012, 3 (05) :1594-1599
[4]   Formation of an aqueous oxoiron(IV) complex at pH 2-6 from a nonheme iron(II) complex and H2O2 [J].
Bautz, Jochen ;
Bukowski, Michael R. ;
Kerscher, Marion ;
Stubna, Audria ;
Comba, Peter ;
Lienke, Achim ;
Munck, Eckard ;
Que, Lawrence, Jr. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (34) :5681-5684
[5]   New evidence against hydroxyl radicals as reactive intermediates in the thermal and photochemically enhanced fenton reactions [J].
Bossmann, SH ;
Oliveros, E ;
Göb, S ;
Siegwart, S ;
Dahlen, EP ;
Payawan, L ;
Straub, M ;
Wörner, M ;
Braun, AM .
JOURNAL OF PHYSICAL CHEMISTRY A, 1998, 102 (28) :5542-5550
[6]  
Brigante M., CHEMOSPHERE IN PRESS, DOI [10.1016/j.chemosphere.2013.09.098, DOI 10.1016/J.CHEM0SPHERE.2013.09.098]
[7]   CRITICAL-REVIEW OF RATE CONSTANTS FOR REACTIONS OF HYDRATED ELECTRONS, HYDROGEN-ATOMS AND HYDROXYL RADICALS (.OH/.O-) IN AQUEOUS-SOLUTION [J].
BUXTON, GV ;
GREENSTOCK, CL ;
HELMAN, WP ;
ROSS, AB .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1988, 17 (02) :513-886
[8]   Fenton degradation of malachite green catalyzed by aromatic additives [J].
Chen, F ;
Ma, WH ;
He, JJ ;
Zhao, JC .
JOURNAL OF PHYSICAL CHEMISTRY A, 2002, 106 (41) :9485-9490
[9]   Photo-Fenton degradation of malachite green catalyzed by aromatic compounds under visible light irradiation [J].
Chen, F ;
He, JJ ;
Zhao, JC ;
Yu, JC .
NEW JOURNAL OF CHEMISTRY, 2002, 26 (03) :336-341
[10]   Strong Enhancement on Fenton Oxidation by Addition of Hydroxylamine to Accelerate the Ferric and Ferrous Iron Cycles [J].
Chen, Liwei ;
Ma, Jun ;
Li, Xuchun ;
Zhang, Jing ;
Fang, Jingyun ;
Guan, Yinghong ;
Xie, Pengchao .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (09) :3925-3930