Laser frequency stabilization using a commercial wavelength meter

被引:45
作者
Couturier, Luc [1 ,2 ]
Nosske, Ingo [1 ,2 ]
Hu, Fachao [1 ,2 ]
Tan, Canzhu [1 ,2 ]
Qiao, Chang [1 ,2 ]
Jiang, Y. H. [3 ]
Chen, Peng [1 ,2 ]
Weidemueller, Matthias [1 ,2 ,4 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci, Microscale & Shanghai Branch, Shanghai 201315, Peoples R China
[2] Univ Sci & Technol China, Excellence & Synerget Innovat Ctr Quantum Informa, CAS Ctr, Shanghai 201315, Peoples R China
[3] Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai 201210, Peoples R China
[4] Heidelberg Univ, Phys Inst, Neuenheimer Feld 226, D-69120 Heidelberg, Germany
基金
中国国家自然科学基金;
关键词
COMPACT FIZEAU WAVEMETER; DIODE-LASER; INTERFEROMETER; SPECTROSCOPY; ATOMS;
D O I
10.1063/1.5025537
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We present the characterization of a laser frequency stabilization scheme using a state-of-the-art wavelength meter based on solid Fizeau interferometers. For a frequency-doubled Ti-sapphire laser operated at 461 nm, an absolute Allan deviation below 10(-9) with a standard deviation of 1 MHz over 10 h is achieved. Using this laser for cooling and trapping of strontium atoms, the wavemeter scheme provides excellent stability in single-channel operation. Multi-channel operation with a multimode fiber switch results in fluctuations of the atomic fluorescence correlated to residual frequency excursions of the laser. The wavemeter-based frequency stabilization scheme can be applied to a wide range of atoms and molecules for laser spectroscopy, cooling, and trapping. Published by AIP Publishing.
引用
收藏
页数:5
相关论文
共 39 条
[1]   Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Perot cavities [J].
Alnis, J. ;
Matveev, A. ;
Kolachevsky, N. ;
Udem, Th. ;
Haensch, T. W. .
PHYSICAL REVIEW A, 2008, 77 (05)
[2]   High-accuracy wavemeter based on a stabilized diode laser [J].
Banerjee, A ;
Rapol, UD ;
Wasan, A ;
Natarajan, V .
APPLIED PHYSICS LETTERS, 2001, 79 (14) :2139-2141
[3]  
Barlow R.J., 1989, Statistics: a guide to the use of statistical methods in the physical sciences, V29
[4]   Automatic laser control for a 88Sr+ optical frequency standard [J].
Barwood, G. P. ;
Gill, P. ;
Huang, G. ;
Klein, H. A. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2012, 23 (05)
[5]   FREQUENCY-MODULATION (FM) SPECTROSCOPY - THEORY OF LINESHAPES AND SIGNAL-TO-NOISE ANALYSIS [J].
BJORKLUND, GC ;
LEVENSON, MD ;
LENTH, W ;
ORTIZ, C .
APPLIED PHYSICS B-PHOTOPHYSICS AND LASER CHEMISTRY, 1983, 32 (03) :145-152
[6]   An introduction to Pound-Drever-Hall laser frequency stabilization [J].
Black, ED .
AMERICAN JOURNAL OF PHYSICS, 2001, 69 (01) :79-87
[7]   A vapor cell based on dispensers for laser spectroscopy [J].
Bridge, E. M. ;
Millen, J. ;
Adams, C. S. ;
Jones, M. P. A. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2009, 80 (01)
[8]  
Demtroder Wolfgang., 2008, LASER SPECTROSCOPY, V1
[9]   COMPACT FIZEAU WAVEMETER [J].
GARDNER, JL .
APPLIED OPTICS, 1985, 24 (21) :3570-3573
[10]   SIMPLE COMPACT FIZEAU WAVEMETER [J].
GRAY, DF ;
SMITH, KA ;
DUNNING, FB .
APPLIED OPTICS, 1986, 25 (08) :1339-1343