Fusion set selection with surrogate metric in multi-atlas based image segmentation

被引:3
作者
Zhao, Tingting [1 ]
Ruan, Dan [1 ]
机构
[1] Univ Calif Los Angeles, Dept Radiat Oncol, Los Angeles, CA 90095 USA
关键词
surrogate model; atlas selection; image segmentation; relevance ordering; MAGNETIC-RESONANCE; MR-IMAGES; PROSTATE; STRATEGIES;
D O I
10.1088/0031-9155/61/3/1136
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Multi-atlas based image segmentation sees unprecedented opportunities but also demanding challenges in the big data era. Relevant atlas selection before label fusion plays a crucial role in reducing potential performance loss from heterogeneous data quality and high computation cost from extensive data. This paper starts with investigating the image similarity metric (termed 'surrogate'), an alternative to the inaccessible geometric agreement metric (termed 'oracle') in atlas relevance assessment, and probes into the problem of how to select the 'most-relevant' atlases and how many such atlases to incorporate. We propose an inference model to relate the surrogates and the oracle geometric agreement metrics. Based on this model, we quantify the behavior of the surrogates in mimicking oracle metrics for atlas relevance ordering. Finally, analytical insights on the choice of fusion set size are presented from a probabilistic perspective, with the integrated goal of including the most relevant atlases and excluding the irrelevant ones. Empirical evidence and performance assessment are provided based on prostate and corpus callosum segmentation.
引用
收藏
页码:1136 / 1154
页数:19
相关论文
共 22 条
[1]  
Acosta O, 2011, I S BIOMED IMAGING, P1966, DOI 10.1109/ISBI.2011.5872795
[2]   Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy [J].
Aljabar, P. ;
Heckemann, R. A. ;
Hammers, A. ;
Hajnal, J. V. ;
Rueckert, D. .
NEUROIMAGE, 2009, 46 (03) :726-738
[3]  
[Anonymous], 2001, LNCS, DOI DOI 10.1007/3-540-45468-3_62
[4]   Combination Strategies in Multi-Atlas Image Segmentation: Application to Brain MR Data [J].
Artaechevarria, Xabier ;
Munoz-Barrutia, Arrate ;
Ortiz-de-Solorzano, Carlos .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (08) :1266-1277
[5]  
BAPAT RB, 1989, SANKHYA SER A, V51, P79
[6]   A review of atlas-based segmentation for magnetic resonance brain images [J].
Cabezas, Mariano ;
Oliver, Arnau ;
Llado, Xavier ;
Freixenet, Jordi ;
Cuadra, Meritxell Bach .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2011, 104 (03) :E158-E177
[7]   MEASURES OF THE AMOUNT OF ECOLOGIC ASSOCIATION BETWEEN SPECIES [J].
DICE, LR .
ECOLOGY, 1945, 26 (03) :297-302
[8]  
DUBUISSON MP, 1994, INT C PATT RECOG, P566, DOI 10.1109/ICPR.1994.576361
[9]   A survey of prostate segmentation methodologies in ultrasound, magnetic resonance and computed tomography images [J].
Ghose, Soumya ;
Oliver, Arnau ;
Marti, Robert ;
Llado, Xavier ;
Vilanova, Joan C. ;
Freixenet, Jordi ;
Mitra, Jhimli ;
Sidibe, Desire ;
Meriaudeau, Fabrice .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2012, 108 (01) :262-287
[10]   Automatic anatomical brain MRI segmentation combining label propagation and decision fusion [J].
Heckemann, Rolf A. ;
Hajnal, Joseph V. ;
Aljabar, Paul ;
Rueckert, Daniel ;
Hammers, Alexander .
NEUROIMAGE, 2006, 33 (01) :115-126