FULLY-HIERARCHICAL FINE-GRAINED PROSODY MODELING FOR INTERPRETABLE SPEECH SYNTHESIS

被引:0
作者
Sun, Guangzhi [1 ]
Zhang, Yu [2 ]
Weiss, Ron J. [2 ]
Cao, Yuan [2 ]
Zen, Heiga [2 ]
Wu, Yonghui [2 ]
机构
[1] Univ Cambridge, Cambridge, England
[2] Google, Mountain View, CA 94043 USA
来源
2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING | 2020年
关键词
text-to-speech; Tacotron; 2; fine-grained VAE; hierarchical;
D O I
10.1109/icassp40776.2020.9053520
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper proposes a hierarchical, fine-grained and interpretable latent variable model for prosody based on the Tacotron 2 text-to-speech model. It achieves multi-resolution modeling of prosody by conditioning finer level representations on coarser level ones. Additionally, it imposes hierarchical conditioning across all latent dimensions using a conditional variational auto-encoder (VAE) with an auto-regressive structure. Evaluation of reconstruction performance illustrates that the new structure does not degrade the model while allowing better interpretability. Interpretations of prosody attributes are provided together with the comparison between word-level and phone-level prosody representations. Moreover, both qualitative and quantitative evaluations are used to demonstrate the improvement in the disentanglement of the latent dimensions.
引用
收藏
页码:6264 / 6268
页数:5
相关论文
共 37 条
[21]  
Ma S., 2019, P INT C LEAR REPR IC
[22]  
Mathieu M.F., 2016, Advances in Neural Information Processing Systems (NIPS), P5040
[23]  
Narayanaswamy S., 2017, Advances in Neural Information Processing Systems (NIPS), P5925
[24]  
Pavlakou T., 2017, Advances in Neural Information Processing Systems, VVol. 30
[25]  
Ping W., 2018, P INT C LEARN REPR I
[26]  
Razavi A., 2019, ARXIV190402882
[27]  
Shen J, 2018, 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), P4779, DOI 10.1109/ICASSP.2018.8461368
[28]  
Skerry-Ryan RJ, 2018, PR MACH LEARN RES, V80
[29]  
Sotelo J, 2017, 5 INT C LEARN REPR
[30]  
Sutskever I., 2014, ADV NEURAL INFORM PR, P3104, DOI DOI 10.1007/S10107-014-0839-0