Eggshell membrane as a bioactive agent in polymeric nanotopographic scaffolds for enhanced bone regeneration

被引:14
作者
Kim, Daun [1 ]
Gwon, Yonghyun [1 ,2 ]
Park, Sunho [1 ,2 ]
Kim, Woochan [1 ,2 ]
Yun, Kwidug [3 ]
Kim, Jangho [1 ,2 ]
机构
[1] Chonnam Natl Univ, Dept Rural & Biosyst Engn, Gwangju 61186, South Korea
[2] Chonnam Natl Univ, Interdisciplinary Program IT Bioconvergence Syst, Gwangju, South Korea
[3] Chonnam Natl Univ, Sch Dent, Dept Prosthodont, Gwangju 61649, South Korea
基金
新加坡国家研究基金会;
关键词
biomimetic; bone regeneration; eggshell membrane; nanotopography; tissue engineering;
D O I
10.1002/bit.27702
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
A bone regeneration scaffold is typically designed as a platform to effectively heal a bone defect while preventing soft tissue infiltration. Despite the wide variety of scaffold materials currently available, such as collagen, critical problems in achieving bone regeneration remain, including a rapid absorption period and low tensile strength as well as high costs. Inspired by extracellular matrix protein and topographical cues, we developed a polycaprolactone-based scaffold for bone regeneration using a soluble eggshell membrane protein (SEP) coating and a nanotopography structure for enhancing the physical properties and bioactivity. The scaffold exhibited adequate flexibility and mechanical strength as a biomedical platform for bone regeneration. The highly aligned nanostructures and SEP coating were found to regulate and enhance cell morphology, adhesion, proliferation, and differentiation in vitro. In a calvaria bone defect mouse model, the scaffolds coated with SEP applied to the defect site promoted bone regeneration along the direction of the nanotopography in vivo. These findings demonstrate that bone-inspired nanostructures and SEP coatings have high potential to be applicable in the design and manipulation of scaffolds for bone regeneration.
引用
收藏
页码:1862 / 1875
页数:14
相关论文
共 58 条
[1]   Eggshell membrane as a biodegradable bone regeneration inhibitor [J].
Arias, J. I. ;
Gonzalez, A. ;
Fernandez, M. S. ;
Gonzalez, C. ;
Saez, D. ;
Arias, J. L. .
JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2008, 2 (04) :228-235
[2]   Bio-inspired configurable multiscale extracellular matrix-like structures for functional alignment and guided orientation of cells [J].
Bae, Won-Gyu ;
Kim, Jangho ;
Choung, Yun-Hoon ;
Chung, Yesol ;
Suh, Kahp Y. ;
Pang, Changhyun ;
Chung, Jong Hoon ;
Jeong, Hoon Eui .
BIOMATERIALS, 2015, 69 :158-164
[3]   Dental pulp stem cells in chitosan/gelatin scaffolds for enhanced orofacial bone regeneration [J].
Bakopoulou, Athina ;
Georgopoulou, Anthie ;
Grivas, Ioannis ;
Bekiari, Chryssa ;
Prymak, Oleg ;
Loza, Kateryna ;
Epple, Matthias ;
Papadopoulos, George C. ;
Koidis, Petros ;
Chatzinikolaidou, Maria .
DENTAL MATERIALS, 2019, 35 (02) :310-327
[4]   Eggshell membrane biomaterial as a platform for applications in materials science [J].
Balaz, Matej .
ACTA BIOMATERIALIA, 2014, 10 (09) :3827-3843
[5]  
Bartolo, 2014, P ASME 2014 12 BIENN, V1
[6]   Nanotopographical modification: a regulator of cellular function through focal adhesions [J].
Biggs, Manus Jonathan Paul ;
Richards, R. Geoff ;
Dalby, Matthew J. .
NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2010, 6 (05) :619-633
[7]   Accelerated craniofacial bone regeneration through dense collagen gel scaffolds seeded with dental pulp stem cells [J].
Chamieh, Frederic ;
Collignon, Anne-Margaux ;
Coyac, Benjamin R. ;
Lesieur, Julie ;
Ribes, Sandy ;
Sadoine, Jeremy ;
Llorens, Annie ;
Nicoletti, Antonino ;
Letourneur, Didier ;
Colombier, Marie-Laure ;
Nazhat, Showan N. ;
Bouchard, Philippe ;
Chaussain, Catherine ;
Rochefort, Gael Y. .
SCIENTIFIC REPORTS, 2016, 6
[8]   Effects of surface functionalization of PLGA membranes for guided bone regeneration on proliferation and behavior of osteoblasts [J].
Chen, Gang ;
Xia, Yang ;
Lu, Xiaoli ;
Zhou, Xuefeng ;
Zhang, Feimin ;
Gu, Ning .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2013, 101 (01) :44-53
[9]   Cell-Matrix Interactions in the Pathobiology of Calcific Aortic Valve Disease Critical Roles for Matricellular, Matricrine, and Matrix Mechanics Cues [J].
Chen, Jan-Hung ;
Simmons, Craig A. .
CIRCULATION RESEARCH, 2011, 108 (12) :1510-1524
[10]   Nanoscale Coatings for Ultralow Dose BMP-2-Driven Regeneration of Critical-Sized Bone Defects [J].
Cheng, Zhe A. ;
Alba-Perez, Andres ;
Gonzalez-Garcia, Cristina ;
Donnelly, Hannah ;
Llopis-Hernandez, Virginia ;
Jayawarna, Vineetha ;
Childs, Peter ;
Shields, David W. ;
Cantini, Marco ;
Ruiz-Cantu, Laura ;
Reid, Andrew ;
Windmill, James F. C. ;
Addison, Elena S. ;
Corr, Sandra ;
Marshall, William G. ;
Dolby, Matthew J. ;
Salmeron-Sanchez, Manuel .
ADVANCED SCIENCE, 2019, 6 (02)