Incomplete interval valued fuzzy preference relations

被引:24
作者
Khalid, Asma [1 ]
Beg, Ismat [1 ]
机构
[1] Lahore Sch Econ, Ctr Math & Stat Sci, Lahore, Pakistan
关键词
Interval valued fuzzy preference relation; Incomplete relation; Additive consistency for interval valued relation; Interval valued multiplicative preference; GROUP DECISION-MAKING; PRIORITY WEIGHTS; MISSING VALUES; CONSISTENCY;
D O I
10.1016/j.ins.2016.02.013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An interval valued preference relation is a preference structure that is used to describe uncertainty in complex decision making problems. Retrieving complete information from experts is improbable in real life scenarios. Discarding incomplete information leads to loss of important data. In this paper, we introduce an upper bound condition to deal with incomplete interval valued fuzzy preference relations. With the help of this condition, missing preferences are estimated such that they are expressible. Moreover, the resultant complete relation is consistent. In case if an expert is unable to abide by the proposed upper bound condition, an algorithm is formulated to assist the expert in complying to the upper bound condition. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:15 / 24
页数:10
相关论文
共 33 条
  • [1] A consistency-based procedure to estimate missing pairwise preference values
    Alonso, S.
    Chiclana, F.
    Herrera, F.
    Herrera-Viedma, E.
    Alcala-Fdez, J.
    Porcel, C.
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2008, 23 (02) : 155 - 175
  • [2] INDIVIDUAL AND SOCIAL STRATEGIES TO DEAL WITH IGNORANCE SITUATIONS IN MULTI-PERSON DECISION MAKING
    Alonso, S.
    Herrera-Viedma, E.
    Chiclana, F.
    Herrera, F.
    [J]. INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MAKING, 2009, 8 (02) : 313 - 333
  • [3] [Anonymous], 1994, FUZZY PREFERENCE MOD
  • [4] Ashraf S, 2015, INT J COMPUT COMMUN, V10, P789
  • [5] Construction of interval-valued fuzzy preference relations from ignorance functions and fuzzy preference relations. Application to decision making
    Barrenechea, Edurne
    Fernandez, Javier
    Pagola, Miguel
    Chiclana, Francisco
    Bustince, Humberto
    [J]. KNOWLEDGE-BASED SYSTEMS, 2014, 58 : 33 - 44
  • [6] Bentkowska U., 2015, APPL SOFT COMPUT
  • [7] Bezdek J. C., 1978, Fuzzy Sets and Systems, V1, P255, DOI 10.1016/0165-0114(78)90017-9
  • [8] Interval-valued preference structures
    Bilgic, T
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1998, 105 (01) : 162 - 183
  • [9] A Note on Two Methods for Estimating Missing Pairwise Preference Values
    Chiclana, Francisco
    Herrera-Viedma, Enrique
    Alonso, Sergio
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2009, 39 (06): : 1628 - 1633
  • [10] A supply chain network equilibrium model for operational and opportunism risk mitigation
    Daultani, Yash
    Kumar, Sushil
    Vaidya, Omkarprasad S.
    Tiwari, Manoj K.
    [J]. INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2015, 53 (18) : 5685 - 5715