Choosability and paintability of the lexicographic product of graphs

被引:0
作者
Keszegh, Balazs [1 ]
Zhu, Xuding [2 ]
机构
[1] Alfred Renyi Inst Math, POB 127, H-1364 Budapest, Hungary
[2] Zhejiang Normal Univ, Dept Math, Jinhua, Zhejiang, Peoples R China
关键词
List coloring; Choice number; On-line choosability; Paintability; Game coloring; Lexicographic product;
D O I
10.1016/j.dam.2017.02.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the choice number and paint number of the lexicographic product of graphs. We prove that if G has maximum degree 4, then for any graph H on n vertices ch(G[H]) <= (4 triangle + 2)(ch(H) + log(2) n) and X-p(G[H]) <= (4 triangle + 2)(X-P(1-1) + log(2) n). (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:84 / 90
页数:7
相关论文
共 50 条
[41]   From (Secure) w-Domination in Graphs to Protection of Lexicographic Product Graphs [J].
Cabrera Martinez, A. ;
Estrada-Moreno, A. ;
Rodriguez-Velazquez, J. A. .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (06) :3747-3765
[42]   On the acyclic choosability of graphs [J].
Montassier, M ;
Ochem, P ;
Raspaud, A .
JOURNAL OF GRAPH THEORY, 2006, 51 (04) :281-300
[43]   The equidistant dimension of graphs: NP-completeness and the case of lexicographic product graphs [J].
Gispert-Fernandez, Adria ;
Rodriuez-Velazquez, Juan Alberto .
AIMS MATHEMATICS, 2024, 9 (06) :15325-15345
[44]   Sum-Paintability of Generalized Theta-Graphs [J].
Carraher, James M. ;
Mahoney, Thomas ;
Puleo, Gregory J. ;
West, Douglas B. .
GRAPHS AND COMBINATORICS, 2015, 31 (05) :1325-1334
[45]   Sum-Paintability of Generalized Theta-Graphs [J].
James M. Carraher ;
Thomas Mahoney ;
Gregory J. Puleo ;
Douglas B. West .
Graphs and Combinatorics, 2015, 31 :1325-1334
[46]   The Spectrum of Weighted Lexicographic Product on Self-Complementary Graphs [J].
Zhang, Xiaoxiao ;
Fang, Zenghui .
IEEE ACCESS, 2023, 11 :85374-85383
[47]   An H-Super Magic Decompositions of the Lexicographic Product of Graphs [J].
Hendy, H. ;
Sugeng, K. A. ;
Salman, A. N. M. .
PROCEEDINGS OF THE 3RD INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES 2017 (ISCPMS2017), 2018, 2023
[48]   On the existence and on the number of (k, l)-kernels in the lexicographic product of graphs [J].
Szumny, Waldemar ;
Wloch, Iwona ;
Wloch, Andrzej .
DISCRETE MATHEMATICS, 2008, 308 (20) :4616-4624
[49]   Some properties on the lexicographic product of graphs obtained by monogenic semigroups [J].
Nihat Akgunes ;
Kinkar C Das ;
Ahmet Sinan Cevik ;
Ismail Naci Cangul .
Journal of Inequalities and Applications, 2013 (1)
[50]   The Merrifield-Simmons index of some lexicographic product graphs [J].
Tian, Shuangliang ;
Chen, Meijun ;
Chen, Ping ;
He, Xue .
2016 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS (IHMSC), VOL. 2, 2016, :13-16