Choosability and paintability of the lexicographic product of graphs

被引:0
作者
Keszegh, Balazs [1 ]
Zhu, Xuding [2 ]
机构
[1] Alfred Renyi Inst Math, POB 127, H-1364 Budapest, Hungary
[2] Zhejiang Normal Univ, Dept Math, Jinhua, Zhejiang, Peoples R China
关键词
List coloring; Choice number; On-line choosability; Paintability; Game coloring; Lexicographic product;
D O I
10.1016/j.dam.2017.02.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the choice number and paint number of the lexicographic product of graphs. We prove that if G has maximum degree 4, then for any graph H on n vertices ch(G[H]) <= (4 triangle + 2)(ch(H) + log(2) n) and X-p(G[H]) <= (4 triangle + 2)(X-P(1-1) + log(2) n). (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:84 / 90
页数:7
相关论文
共 50 条
  • [21] Path-connectivity of lexicographic product graphs
    Mao, Yaping
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2016, 93 (01) : 27 - 39
  • [22] On the super domination number of lexicographic product graphs
    Dettlaff, M.
    Lemanska, M.
    Rodriguez-Velazquez, J. A.
    Zuazua, R.
    DISCRETE APPLIED MATHEMATICS, 2019, 263 (118-129) : 118 - 129
  • [23] Strong Resolving Domination in the Lexicographic Product of Graphs
    Monsanto, Gerald B.
    Acal, Penelyn L.
    Rara, Helen M.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (01): : 363 - 372
  • [24] Lexicographic product graphs Pm[Pn] are antimagic
    Ma, Wenhui
    Dong, Guanghua
    Lu, Yingyu
    Wang, Ning
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2018, 15 (03) : 271 - 283
  • [25] On the path-connectivity of lexicographic product graphs
    Zhang, Shumin
    Ye, Chengfu
    ARS COMBINATORIA, 2015, 121 : 141 - 158
  • [26] Some diameter notions in lexicographic product of graphs
    Chithra, M. R.
    Menon, Manju K.
    Vijayakumar, A.
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2018, 6 (02) : 258 - 268
  • [27] Total colorings of certain classes of lexicographic product graphs
    Sandhiya, T. P.
    Geetha, J.
    Somasundaram, K.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (03)
  • [28] The number of spanning trees in a new lexicographic product of graphs
    Liang Dong
    Li Feng
    Xu ZongBen
    SCIENCE CHINA-INFORMATION SCIENCES, 2014, 57 (11) : 1 - 9
  • [29] The number of spanning trees in a new lexicographic product of graphs
    Dong Liang
    Feng Li
    ZongBen Xu
    Science China Information Sciences, 2014, 57 : 1 - 9
  • [30] ON LOCAL ANTIMAGIC CHROMATIC NUMBER OF LEXICOGRAPHIC PRODUCT GRAPHS
    Lau, G. -C.
    Shiu, W. C.
    ACTA MATHEMATICA HUNGARICA, 2023, 169 (1) : 158 - 170