Choosability and paintability of the lexicographic product of graphs

被引:0
作者
Keszegh, Balazs [1 ]
Zhu, Xuding [2 ]
机构
[1] Alfred Renyi Inst Math, POB 127, H-1364 Budapest, Hungary
[2] Zhejiang Normal Univ, Dept Math, Jinhua, Zhejiang, Peoples R China
关键词
List coloring; Choice number; On-line choosability; Paintability; Game coloring; Lexicographic product;
D O I
10.1016/j.dam.2017.02.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the choice number and paint number of the lexicographic product of graphs. We prove that if G has maximum degree 4, then for any graph H on n vertices ch(G[H]) <= (4 triangle + 2)(ch(H) + log(2) n) and X-p(G[H]) <= (4 triangle + 2)(X-P(1-1) + log(2) n). (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:84 / 90
页数:7
相关论文
共 13 条
[1]   Choosability and fractional chromatic numbers [J].
Alon, N ;
Tuza, Z ;
Voigt, M .
DISCRETE MATHEMATICS, 1997, 165 :31-38
[2]  
Alon N., 1992, COMB PROBAB COMPUT, V1, P107, DOI [DOI 10.1017/S0963548300000122, 10.1017/S09635483000, 10.1017/S0963548300000122]
[3]  
Borowiecki M., 2007, ELECTRON J COMB, V14, P26
[4]   ON-LINE 3-CHOOSABLE PLANAR GRAPHS [J].
Chang, Ting-Pang ;
Zhu, Xuding .
TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (02) :511-519
[5]  
Duraj L., 2011, PREPRINT
[6]  
Erdos P., 1979, C NUMERANTUM, V26, P125
[7]   CHROMATIC NUMBER AND OTHER FUNCTIONS OF LEXICOGRAPHIC PRODUCT [J].
GELLER, D ;
STAHL, S .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1975, 19 (01) :87-95
[8]  
Gutowski G., 2011, Electron. J. Combin, V18, P8
[9]  
SCHAUZ U, 2010, ELECTRON J COMB, V17, P18
[10]  
Schauz Uwe, 2009, Electron. J. Combin., V16, P18