The neural networks based modeling of a polybenzimidazole-based polymer electrolyte membrane fuel cell: Effect of temperature

被引:35
|
作者
Lobato, Justo [1 ]
Canizares, Pablo [1 ]
Rodrigo, Manuel A. [1 ]
Linares, Jose J. [1 ]
Piuleac, Ciprian-George [2 ]
Curteanu, Silvia [2 ]
机构
[1] Univ Castilla La Mancha, Dept Chem Engn, Ciudad Real 13004, Spain
[2] Gh Asachi Tech Univ Iasi, Dept Chem Engn, Iasi 700050, Romania
关键词
PBI; PEMFC; High temperature; Neural network; Modeling; PERFORMANCE; OPTIMIZATION; OPERATION; REACTOR; FILMS;
D O I
10.1016/j.jpowsour.2009.01.079
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Neural network models represent an important tool of Artificial Intelligence for fuel cell researchers in order to help them to elucidate the processes within the cells, by allowing optimization of materials, cells, stacks, and systems and support control systems. In this work three types of neural networks, that have as common characteristic the supervised learning control (Multilayer Perceptron, Generalized Feedforward Network and Jordan and Elman Network), have been designed to model the performance of a polybenzimidazole-polymer electrolyte membrane fuel cells operating upon a temperature range of 100-175 degrees C. The influence of temperature of two periods was studied: the temperature in the conditioning period and temperature when the fuel cell was operating. Three inputs variables: the conditioning temperature, the operating temperature and current density were taken into account in order to evaluate their influence upon the potential, the cathode resistance anti the ohmic resistance. The Multilayer Perceptron model provides good predictions for different values of operating temperatures and potential and, hence, it is the best choice among the study models, recommended to investigate the influence of process variables of PEMFCs. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:190 / 194
页数:5
相关论文
共 50 条
  • [1] Effect of Compression Cycling on Polybenzimidazole-based High-Temperature Polymer Electrolyte Membrane Fuel Cells
    Pinar, F. J.
    Rastedt, M.
    Pilinski, N.
    Wagner, P.
    FUEL CELLS, 2015, 15 (01) : 140 - 149
  • [2] Sensitivity analysis of a polybenzimidazole-based polymer fuel cell and insight into the effect of humidification
    Galbiati, Samuele
    Baricci, Andrea
    Casalegno, Andrea
    Marchesi, Renzo
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2014, 38 (06) : 780 - 790
  • [3] Optimization of gas diffusion electrode for polybenzimidazole-based high temperature proton exchange membrane fuel cell: Evaluation of polymer binders in catalyst layer
    Su, Huaneng
    Pasupathi, Sivakumar
    Bladergroen, Bernard
    Linkov, Vladimir
    Pollet, Bruno G.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (26) : 11370 - 11378
  • [4] Polybenzimidazole-Based Polymer Electrolyte Membranes for High-Temperature Fuel Cells: Current Status and Prospects
    Zhou, Zhengping
    Zholobko, Oksana
    Wu, Xiang-Fa
    Aulich, Ted
    Thakare, Jivan
    Hurley, John
    ENERGIES, 2021, 14 (01)
  • [5] Polybenzimidazole-based block copolymers: From monomers to membrane electrode assemblies for high temperature polymer electrolyte membrane fuel cells
    Schoenberger, Frank
    Qian, Guoqing
    Benicewicz, Brian C.
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2017, 55 (11) : 1831 - 1843
  • [6] Membrane Electrode Assembly for High Temperature Polymer Electrolyte Membrane Fuel Cell Based on Phosphoric Acid-Doped Polybenzimidazole
    Yao, Dongmei
    Zhang, Weiqi
    Xu, Qian
    Xu, Li
    Li, Huaming
    Su, Huaneng
    PROGRESS IN CHEMISTRY, 2019, 31 (2-3) : 455 - 463
  • [7] Scale-up of a high temperature polymer electrolyte membrane fuel cell based on polybenzimidazole
    Javier Pinar, F.
    Canizares, Pablo
    Rodrigo, Manuel A.
    Ubeda, Diego
    Lobato, Justo
    JOURNAL OF POWER SOURCES, 2011, 196 (09) : 4306 - 4313
  • [8] Modifications on Promoting the Proton Conductivity of Polybenzimidazole-Based Polymer Electrolyte Membranes in Fuel Cells
    Chen, Junyu
    Cao, Jiamu
    Zhang, Rongji
    Zhou, Jing
    Wang, Shimin
    Liu, Xu
    Zhang, Tinghe
    Tao, Xinyuan
    Zhang, Yufeng
    MEMBRANES, 2021, 11 (11)
  • [9] A Quaternary Polybenzimidazole Membrane for Intermediate Temperature Polymer Electrolyte Membrane Fuel Cells
    Xu, C.
    Scott, K.
    Li, Q.
    Yang, J.
    Wu, X.
    FUEL CELLS, 2013, 13 (02) : 118 - 125
  • [10] The effects of excess phosphoric acid in a Polybenzimidazole-based high temperature proton exchange membrane fuel cell
    Matar, Saif
    Higier, Andrew
    Liu, Hongtan
    JOURNAL OF POWER SOURCES, 2010, 195 (01) : 181 - 184