Dynamic fuel retention in tokamak wall materials: An in situ laboratory study of deuterium release from polycrystalline tungsten at room temperature

被引:41
作者
Bisson, R. [1 ]
Markelj, S. [1 ,2 ]
Mourey, O. [1 ]
Ghiorghiu, F. [1 ]
Achkasov, K. [1 ,3 ]
Layet, J. -M. [1 ]
Roubin, P. [1 ]
Cartry, G. [1 ]
Grisolia, C. [3 ]
Angot, T. [1 ]
机构
[1] Aix Marseille Univ, CNRS, PIIM UMR 7345, F-13397 Marseille, France
[2] Jozef Stefan Inst, Dhaka 1000, Bangladesh
[3] CEA, IRFM, F-13108 St Paul Les Durance, France
关键词
Deuterium; Ion implantation; Fuel retention; Tungsten; Tokamak; Plasma surface interaction; Thermodesorption; HYDROGEN; DESORPTION; DIFFUSION;
D O I
10.1016/j.jnucmat.2015.07.028
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Retention of deuterium ion implanted in polycrystalline tungsten samples is studied in situ in an ultrahigh vacuum apparatus equipped with a low-flux ion source and a high sensitivity thermo-desorption setup. Retention as a function of ion fluence was measured in the 10(17)-10(21) D-i.m(-2) range. By combining this new fluence range with the literature in situ experimental data, we evidence the existence of a retention alpha fluence(0.645 +/- 0.025) relationship which describes deuterium retention behavior on polycrystalline tungsten on 8 orders of magnitude of fluence. Evolution of deuterium retention as a function of the sample storage time in vacuum at room temperature was followed. A loss of 50% of the retained deuterium is observed when the storage time is increased from 2 h to 135 h. The role of the surface and of natural bulk defects on the deuterium retention/release in polycrystalline tungsten is discussed in light of the behavior of the single desorption peak obtained with Temperature Programmed Desorption. (C) 2015 EURATOM. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:432 / 438
页数:7
相关论文
共 31 条
[1]  
Achkasov K., IN PRESS
[2]  
[Anonymous], 1962, Vacuum, DOI DOI 10.1016/0042-207X(62)90978-8
[3]   Angle-resolved study of hydrogen abstraction on Si(100) and Si(111):: Evidence for non-activated pathways [J].
Bisson, R. ;
Philippe, L. ;
Chatelet, M. .
SURFACE SCIENCE, 2006, 600 (19) :4454-4463
[4]   Angular distributions of H-induced HD and D2 desorptions from the Si(100) surfaces -: Comment [J].
Bisson, R. ;
Philippe, L. ;
Chatelet, M. ;
Kratzer, P. .
JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (01)
[5]   Fuel retention studies with the ITER-Like Wall in JET [J].
Brezinsek, S. ;
Loarer, T. ;
Philipps, V. ;
Esser, H. G. ;
Gruenhagen, S. ;
Smith, R. ;
Felton, R. ;
Banks, J. ;
Belo, P. ;
Boboc, A. ;
Bucalossi, J. ;
Clever, M. ;
Coenen, J. W. ;
Coffey, I. ;
Devaux, S. ;
Douai, D. ;
Freisinger, M. ;
Frigione, D. ;
Groth, M. ;
Huber, A. ;
Hobirk, J. ;
Jachmich, S. ;
Knipe, S. ;
Krieger, K. ;
Kruezi, U. ;
Marsen, S. ;
Matthews, G. F. ;
Meigs, A. G. ;
Nave, F. ;
Nunes, I. ;
Neu, R. ;
Roth, J. ;
Stamp, M. F. ;
Vartanian, S. ;
Samm, U. .
NUCLEAR FUSION, 2013, 53 (08)
[6]   Hydrogen diffusion and vacancies formation in tungsten: Density Functional Theory calculations and statistical models [J].
Fernandez, N. ;
Ferro, Y. ;
Kato, D. .
ACTA MATERIALIA, 2015, 94 :307-318
[7]   Hydrogen interaction with point defects in tungsten [J].
Heinola, K. ;
Ahlgren, T. ;
Nordlund, K. ;
Keinonen, J. .
PHYSICAL REVIEW B, 2010, 82 (09)
[8]   Macroscopic rate equation modeling of trapping/detrapping of hydrogen isotopes in tungsten materials [J].
Hodille, E. A. ;
Bonnin, X. ;
Bisson, R. ;
Angot, T. ;
Becquart, C. S. ;
Layet, J. M. ;
Grisolia, C. .
JOURNAL OF NUCLEAR MATERIALS, 2015, 467 :424-431
[9]   Hydrogen in tungsten: Absorption, diffusion, vacancy trapping, and decohesion [J].
Johnson, Donald F. ;
Carter, Emily A. .
JOURNAL OF MATERIALS RESEARCH, 2010, 25 (02) :315-327
[10]  
Lipschultz B., 2010, PSFCRR1014 MIT