On the Eisenstein ideal for imaginary quadratic fields

被引:9
作者
Berger, Tobias [1 ]
机构
[1] Univ Cambridge, Ctr Math Sci, Dept Pure Math & Math Stat, Cambridge CB3 0WB, England
关键词
Selmer groups; Eisenstein cohomology; congruences of modular forms; Bloch-Kato conjecture; HECKE L-FUNCTIONS; BLOCH-KATO CONJECTURE; TOTALLY-REAL FIELDS; MODULAR-FORMS; ADIC REPRESENTATIONS; ARITHMETIC GROUPS; IWASAWA THEORY; SPECIAL VALUES; CUSP FORMS; GALOIS REPRESENTATIONS;
D O I
10.1112/S0010437X09003984
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For certain algebraic Hecke characters chi of ail imaginary quadratic field F we define an Eisenstein ideal in a p-adic Hecke algebra acting on cuspidal automorphic forms of GL(2/F). By finding congruences between Eisenstein cohomology classes (in the sense of G. Harder) and cuspidal classes we prove a lower bound for the index of the Eisenstein ideal in the Hecke algebra, in terms of the special L-value L(0, chi). We further prove that its index is bounded from. above by the p-valuation of the order of the Selmer group of the p-adic Galois character associated to chi(-1). This uses the work of R. Taylor et al. on attaching Galois representations to cuspforms of GL(2/F). Together these results imply a lower bound for the size of the Selmer group in terms of L(0, chi), coinciding with the value given by the Bloch-Kato conjecture.
引用
收藏
页码:603 / 632
页数:30
相关论文
共 60 条
[1]   Anticyclotomic Iwasawa theory of CM elliptic curves [J].
Agboola, Adebisi ;
Howard, Benjamin .
ANNALES DE L INSTITUT FOURIER, 2006, 56 (04) :1001-1048
[2]  
[Anonymous], LONDON MATH SOC LECT
[3]  
[Anonymous], BONNER MATH SCHRIFTE
[4]  
[Anonymous], 2008, GRUNDLEHREN MATH WIS
[5]  
ASH A, 1986, J REINE ANGEW MATH, V365, P192
[6]  
Bellaïche J, 2004, ANN SCI ECOLE NORM S, V37, P611, DOI 10.1016/S0012-9593(04)00039-4
[7]  
BERGER T, 2005, THESIS U MICHIGAN AN
[8]  
BERGER T, J I MATH JU IN PRESS
[9]   Denominators of Eisenstein cohomology classes for GL2 over imaginary quadratic fields [J].
Berger, Tobias .
MANUSCRIPTA MATHEMATICA, 2008, 125 (04) :427-470
[10]   l-adic Representations Associated to Modular Forms over Imaginary Quadratic Fields [J].
Berger, Tobias ;
Harcos, Gergely .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007