Approaching points by continuous selections

被引:5
|
作者
Gutev, Valentin [1 ]
机构
[1] Univ KwaZulu Natal, Fac Sci, Sch Math Sci, ZA-4041 Durban, South Africa
关键词
hyperspace topology; Vietoris topology; continuous selection;
D O I
10.2969/jmsj/1179759545
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Some further results about special Vietoris continuous selections and totally disconnected spaces are obtained, also several applications are demonstrated. In particular, it is demonstrated that a homogeneous separable metrizable space has a continuous selection for its Vietoris hyperspace if and only if it is discrete, or a discrete sum of copies of the Cantor set, or is the irrational numbers.
引用
收藏
页码:1203 / 1210
页数:8
相关论文
共 50 条
  • [1] Selections and approaching points in products
    Gutev, Valentin
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2016, 57 (01): : 89 - 95
  • [2] Selections and countably-approachable points
    Jiang, Nan
    TOPOLOGY AND ITS APPLICATIONS, 2010, 157 (01) : 123 - 126
  • [3] Hyperspace selections avoiding points
    Gutev, Valentin
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2022, 63 (03): : 1 - 2
  • [5] Butterfly points and hyperspace selections
    Gutev, Valentin
    APPLIED GENERAL TOPOLOGY, 2024, 25 (02): : 503 - 517
  • [6] Characterizations of intervals via continuous selections
    Nogura T.
    Shakhmatov D.
    Rendiconti del Circolo Matematico di Palermo, 1997, 46 (2) : 317 - 328
  • [7] CONTINUOUS-SELECTIONS ON CERTAIN SPACES
    HATTORI, Y
    NOGURA, T
    HOUSTON JOURNAL OF MATHEMATICS, 1995, 21 (03): : 585 - 594
  • [8] Continuous selections and σ-spaces
    Repovs, Dusan
    Tsaban, Boaz
    Zdomskyy, Lyubomyr
    TOPOLOGY AND ITS APPLICATIONS, 2008, 156 (01) : 104 - 109
  • [9] Paraconvexity and continuous selections
    Gutev, Valentin
    TOPOLOGY AND ITS APPLICATIONS, 2017, 227 : 111 - 117
  • [10] Continuous selections on spaces of continuous functions
    Tamariz-Mascarua, Angel
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2006, 47 (04): : 641 - 660