Enhanced thermal energy storage of a paraffin-based phase change material (PCM) using nano carbons

被引:114
|
作者
Sun, Xiaoqin [1 ]
Liu, Lihui [1 ]
Mo, Yajing [1 ]
Li, Jie [1 ]
Li, Chuanchang [1 ]
机构
[1] Changsha Univ Sci & Technol, Sch Energy & Power Engn, Changsha 410114, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Phase change materials (PCMs); Nano carbons; Concentration; Melting time; Natural convection; LATENT-HEAT STORAGE; CONDUCTIVITY; COMPOSITE; SYSTEM; NANOPARTICLES; NANOFLUIDS; ADDITIVES; BEHAVIOR;
D O I
10.1016/j.applthermaleng.2020.115992
中图分类号
O414.1 [热力学];
学科分类号
摘要
Thermal energy storage performance of a paraffin-based phase change material (PCM) enhanced by nano graphite and nano coconut shell charcoal was investigated. The nano carbon concentration was 0.02, 0.06, and 0.10 wt%, respectively. To understand the influence of nano carbons on the thermal behavior of PCMs, the melting process of nano-enhanced PCMs (NePCMs) was monitored using thermocouples and an infrared camera, in comparison with the melting process of pure paraffin. It was found that the melting process of NePCMs without dispersant was accelerated with nano carbons at concentration of 0.02 wt%, although the thermal conductivity of NePCMs with higher concentrations was higher. With increasing concentration, the melting process was decelerated because of the agglomeration of nano carbons and the suppression of natural convection. To eliminate the agglomeration, Span 80 and oleic acid were used as dispersants for the PCMs with 0.06 wt% and 0.10 wt% nano graphite. The melting process was accelerated further with the increasing concentration of the nano graphite. The shortest melting time was realized using 0.06 wt% nano graphite and 2.0 wt% oleic acid, which was 21% shorter than the pure paraffin. Moreover, it was noticed that the data from thermocouples were not able to represent the melting process accurately because of the limited measuring points, especially for the melting process with agglomeration and sedimentation.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Phase Change Material (PCM) with Shaped Stabilized Method for Thermal Energy Storage: A Review
    Trisnadewi, Titin
    Putra, Nandy
    4TH INTERNATIONAL TROPICAL RENEWABLE ENERGY CONFERENCE (I-TREC 2019), 2020, 2255
  • [32] Review on the preparation and performance of paraffin-based phase change microcapsules for heat storage
    Chang, Zhijuan
    Wang, Kai
    Wu, Xuehong
    Lei, Gao
    Wang, Qiangwei
    Liu, He
    Wang, Yanling
    Zhang, Qi
    JOURNAL OF ENERGY STORAGE, 2022, 46
  • [33] Performance evaluation of a novel nano-enhanced phase change material for thermal energy storage applications
    Daneshazarian, Reza
    Eslami, Reza
    Azizi, Nahid
    Zarrin, Hadis
    Berardi, Umberto
    JOURNAL OF ENERGY STORAGE, 2023, 74
  • [34] Structural characteristics and thermal performances of paraffin-based phase change materials for phase change sunshade
    Jiahong Zhou
    Hua Fei
    Qian He
    Peisheng Li
    Yucheng Pan
    Ximei Liang
    Applied Physics A, 2024, 130
  • [35] Carbon nanotube/paraffin/montmorillonite composite phase change material for thermal energy storage
    Li, Min
    Guo, Qiangang
    Nutt, Steven
    SOLAR ENERGY, 2017, 146 : 1 - 7
  • [36] Study on paraffin/expanded graphite composite phase change thermal energy storage material
    Zhang, ZG
    Fang, XM
    ENERGY CONVERSION AND MANAGEMENT, 2006, 47 (03) : 303 - 310
  • [37] Simulation of energy storage system with phase change material (PCM)
    Rostamizadeh, Mohammad
    Khanlarkhani, Mehrdad
    Sadrameli, S. Mojtaba
    ENERGY AND BUILDINGS, 2012, 49 : 419 - 422
  • [38] Thermal Performance Enhancement of CuO-Paraffin Nano-Enhanced Phase Change Material
    Singh S.
    Verma S.
    Kumar R.
    Gupta G.
    Pati P.R.
    Sharma A.
    International Journal of Vehicle Structures and Systems, 2022, 14 (03): : 411 - 416
  • [39] Exploring the Thermal Potential of Shape Stabilized Graphene Nano Platelets Enhanced Phase Change Material for Thermal Energy Storage
    Islam, Anas
    Pandey, Adarsh Kumar
    Bhutto, Yasir Ali
    Balasubramanian, Kalidasan
    Rahman, Saidur
    Zaed, Md. Abu
    ENERGY TECHNOLOGY, 2024,
  • [40] Magnetic mixed convection within wavy trapezoidal thermal energy storage systems using nano enhanced phase change material
    Abderrahmane, Aissa
    Younis, Obai
    Ahmed, Sameh E.
    Mourad, Abed
    Raizha, Zehba
    Ahmed, Awadallah
    SCIENTIFIC REPORTS, 2024, 14 (01):