Dynamic Positioning Particle Filtering Method Based on the EAKF

被引:0
作者
Lin, Xiaogong [1 ]
Chen, Chen [1 ]
机构
[1] Harbin Engn Univ, Harbin 150001, Heilongjiang, Peoples R China
来源
PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017) | 2017年
基金
中国国家自然科学基金;
关键词
Dynamic positioning; nonlinear system state estimation; particle filter; EAKF; importance probability density function;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In order to improve the positioning accuracy and reliability of ship dynamic positioning system, a method of combing Ensemble Adjustment Kalman Filter (EAKF) and Particle Filter was proposed. It's according to the use of the max of posterior probability density to generate the importance density function of particle. So that the importance probability density function could integrate into the latest observation information and accord with the posterior probability density distribution of the true state. We can use it to deal with Gaussian and nonlinear system state estimation problem effectively. The simulation results verify the effectiveness of the algorithm.
引用
收藏
页码:517 / 522
页数:6
相关论文
共 12 条
  • [1] Anderson JL, 2001, MON WEATHER REV, V129, P2884, DOI 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO
  • [2] 2
  • [3] Cubature Kalman Filters
    Arasaratnam, Ienkaran
    Haykin, Simon
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (06) : 1254 - 1269
  • [4] A Joint Multitarget Estimator for the Joint Target Detection and Tracking Filter
    Baser, Erkan
    McDonald, Michael
    Kirubarajan, Thia
    Efe, Murat
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (15) : 3857 - 3871
  • [5] Bian XQ., 2011, DYNAMIC POSITIONING
  • [6] Cui Y, 2015, SYSTEMS MAN CYBERN A, V30, P1
  • [7] der Merwe R Van, 2000, 380 CUEDPFINFENGPTR
  • [8] Hu Shi-qiang, 2005, Control and Decision, V20, P361
  • [9] Julier S., 1997, P AEROSENCE 11 INT S
  • [10] Hydrodynamic Modeling of Moored Ship Motion in an Irregular Domain
    Kumar, Prashant
    Ik, Kim Kwang
    [J]. INTERNATIONAL CONFERENCE ON COMPUTATIONAL HEAT AND MASS TRANSFER (ICCHMT) - 2015, 2015, 127 : 598 - 604