Design of magnetized liner inertial fusion experiments using the Z facility

被引:132
作者
Sefkow, A. B. [1 ]
Slutz, S. A. [1 ]
Koning, J. M. [2 ]
Marinak, M. M. [2 ]
Peterson, K. J. [1 ]
Sinars, D. B. [1 ]
Vesey, R. A. [1 ]
机构
[1] Sandia Natl Labs, Albuquerque, NM 87185 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
关键词
TARGET FUSION; CONFINEMENT FUSION; IGNITION CONDITIONS; ICF TARGETS; FUEL; DENSITY; INSTABILITIES; SIMULATIONS; IMPLOSIONS; PHYSICS;
D O I
10.1063/1.4890298
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The magnetized liner inertial fusion concept has been presented as a path toward obtaining substantial thermonuclear fusion yields using the Z accelerator [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)]. We present the first integrated magnetohydrodynamic simulations of the inertial fusion targets, which self-consistently include laser preheating of the fuel, the presence of electrodes, and end loss effects. These numerical simulations provided the design for the first thermonuclear fusion neutron-producing experiments on Z using capabilities that presently exist: peak currents of I-max = 18-20 MA, pre-seeded axial magnetic fields of B-z(0) = 10 T, laser preheat energies of about E-las = 2 kJ delivered in 2 ns, DD fuel, and an aspect ratio 6 solid Be liner imploded to 70 km/s. Specific design details and observables for both near-term and future experiments are discussed, including sensitivity to laser timing and absorbed preheat energy. The initial experiments measured stagnation radii r(stag) < 75 mu m, temperatures around 3 keV, and isotropic neutron yields up to Y-n(DD) = 2 x 10(12), with inferred alpha-particle magnetization parameters around r(stag)/r(L)(alpha) = 1:7 [M. R. Gomez et al., Phys. Rev. Lett. (submitted)]. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:15
相关论文
共 50 条
[1]  
Atzeni S., 2004, The Physics of Inertial Fusion: Beamplasma Interaction, Hydrodynamics, Hot Dense Matter
[2]   Observations of Modified Three-Dimensional Instability Structure for Imploding z-Pinch Liners that are Premagnetized with an Axial Field [J].
Awe, T. J. ;
McBride, R. D. ;
Jennings, C. A. ;
Lamppa, D. C. ;
Martin, M. R. ;
Rovang, D. C. ;
Slutz, S. A. ;
Cuneo, M. E. ;
Owen, A. C. ;
Sinars, D. B. ;
Tomlinson, K. ;
Gomez, M. R. ;
Hansen, S. B. ;
Herrmann, M. C. ;
McKenney, J. L. ;
Nakhleh, C. ;
Robertson, G. K. ;
Rochau, G. A. ;
Savage, M. E. ;
Schroen, D. G. ;
Stygar, W. A. .
PHYSICAL REVIEW LETTERS, 2013, 111 (23)
[3]   Magnetized implosions driven by intense ion beams [J].
Basko, MM .
PHYSICS OF PLASMAS, 2000, 7 (11) :4579-4589
[4]   Ignition conditions for magnetized target fusion in cylindrical geometry [J].
Basko, MM ;
Kemp, AJ ;
Meyer-ter-Vehn, J .
NUCLEAR FUSION, 2000, 40 (01) :59-68
[5]   THE RATIO OF D-T TO D-D REACTIONS AS A MEASURE OF THE FUEL DENSITY-RADIUS PRODUCT IN INITIALLY TRITIUM-FREE INERTIAL CONFINEMENT FUSION-TARGETS [J].
BLUE, TE ;
HARRIS, DB .
NUCLEAR SCIENCE AND ENGINEERING, 1981, 77 (04) :463-469
[6]   NEUTRON-SPECTRA FROM INERTIAL CONFINEMENT FUSION-TARGETS FOR MEASUREMENT OF FUEL AREAL DENSITY AND CHARGED-PARTICLE STOPPING POWERS [J].
CABLE, MD ;
HATCHETT, SP .
JOURNAL OF APPLIED PHYSICS, 1987, 62 (06) :2233-2236
[7]   Fusion Yield Enhancement in Magnetized Laser-Driven Implosions [J].
Chang, P. Y. ;
Fiksel, G. ;
Hohenberger, M. ;
Knauer, J. P. ;
Betti, R. ;
Marshall, F. J. ;
Meyerhofer, D. D. ;
Seguin, F. H. ;
Petrasso, R. D. .
PHYSICAL REVIEW LETTERS, 2011, 107 (03)
[8]   Magnetically Driven Implosions for Inertial Confinement Fusion at Sandia National Laboratories [J].
Cuneo, M. E. ;
Herrmann, M. C. ;
Sinars, D. B. ;
Slutz, S. A. ;
Stygar, W. A. ;
Vesey, R. A. ;
Sefkow, A. B. ;
Rochau, G. A. ;
Chandler, G. A. ;
Bailey, J. E. ;
Porter, J. L. ;
McBride, R. D. ;
Rovang, D. C. ;
Rovang, D. C. ;
Mazarakis, M. G. ;
Yu, E. P. ;
Lamppa, D. C. ;
Peterson, K. J. ;
Nakhleh, C. ;
Hansen, S. B. ;
Lopez, A. J. ;
Savage, M. E. ;
Jennings, C. A. ;
Martin, M. R. ;
Lemke, R. W. ;
Atherton, B. W. ;
Smith, I. C. ;
Rambo, P. K. ;
Jones, M. ;
Lopez, M. R. ;
Christenson, P. J. ;
Sweeney, M. A. ;
Jones, B. ;
McPherson, L. A. ;
Harding, E. ;
Gomez, M. R. ;
Knapp, P. F. ;
Awe, T. J. ;
Leeper, R. J. ;
Ruiz, C. L. ;
Cooper, G. W. ;
Hahn, K. D. ;
McKenney, J. ;
Owen, A. C. ;
McKee, G. R. ;
Leifeste, G. T. ;
Ampleford, D. J. ;
Waisman, E. M. ;
Harvey-Thompson, A. ;
Kaye, R. J. .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2012, 40 (12) :3222-3245
[9]   Experimental and computational progress on liner implosions for compression of FRCs [J].
Degnan, James H. ;
Amdahl, David J. ;
Brown, Aaron ;
Cavazos, Thomas ;
Coffey, Sean K. ;
Domonkos, Matthew T. ;
Frese, Michael H. ;
Frese, Sherry D. ;
Gale, Donald G. ;
Grabowski, Theodore C. ;
Intrator, Thomas P. ;
Kirkpatrick, Ronald C. ;
Kiuttu, Gerald F. ;
Lehr, Frederick M. ;
Letterio, James D. ;
Parker, Jerald V. ;
Peterkin, Robert E., Jr. ;
Roderick, Norman F. ;
Ruden, Edward L. ;
Siemon, Richard E. ;
Sommars, Wayne ;
Tucker, Wesley ;
Turchi, Peter J. ;
Wurden, Glen A. .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2008, 36 (01) :80-91
[10]   Progress towards ignition on the National Ignition Facility [J].
Edwards, M. J. ;
Patel, P. K. ;
Lindl, J. D. ;
Atherton, L. J. ;
Glenzer, S. H. ;
Haan, S. W. ;
Kilkenny, J. D. ;
Landen, O. L. ;
Moses, E. I. ;
Nikroo, A. ;
Petrasso, R. ;
Sangster, T. C. ;
Springer, P. T. ;
Batha, S. ;
Benedetti, R. ;
Bernstein, L. ;
Betti, R. ;
Bleuel, D. L. ;
Boehly, T. R. ;
Bradley, D. K. ;
Caggiano, J. A. ;
Callahan, D. A. ;
Celliers, P. M. ;
Cerjan, C. J. ;
Chen, K. C. ;
Clark, D. S. ;
Collins, G. W. ;
Dewald, E. L. ;
Divol, L. ;
Dixit, S. ;
Doeppner, T. ;
Edgell, D. H. ;
Fair, J. E. ;
Farrell, M. ;
Fortner, R. J. ;
Frenje, J. ;
Johnson, M. G. Gatu ;
Giraldez, E. ;
Glebov, V. Yu ;
Grim, G. ;
Hammel, B. A. ;
Hamza, A. V. ;
Harding, D. R. ;
Hatchett, S. P. ;
Hein, N. ;
Herrmann, H. W. ;
Hicks, D. ;
Hinkel, D. E. ;
Hoppe, M. ;
Hsing, W. W. .
PHYSICS OF PLASMAS, 2013, 20 (07)