Consistency of Bayesian nonparametric inference for discretely observed jump diffusions

被引:4
|
作者
Koskela, Jere [1 ]
Spano, Dario [1 ]
Jenkins, Paul A. [1 ,2 ]
机构
[1] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England
[2] Univ Warwick, Dept Comp Sci, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
Bayesian statistics; Dirichlet mixture model prior; discrete net prior; jump diffusion; nonparametric inference; posterior consistency; STOCHASTIC DIFFERENTIAL-EQUATIONS; DRIFT ESTIMATION; POSTERIOR DISTRIBUTIONS; CONVERGENCE-RATES; SIMULATION; MODELS; DRIVEN; RISK;
D O I
10.3150/18-BEJ1050
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce verifiable criteria for weak posterior consistency of Bayesian nonparametric inference for jump diffusions with unit diffusion coefficient and uniformly Lipschitz drift and jump coefficients in arbitrary dimension. The criteria are expressed in terms of coefficients of the SDEs describing the process, and do not depend on intractable quantities such as transition densities. We also show that priors built from discrete nets, wavelet expansions, and Dirichlet mixture models satisfy our conditions. This generalises known results by incorporating jumps into previous work on unit diffusions with uniformly Lipschitz drift coefficients.
引用
收藏
页码:2183 / 2205
页数:23
相关论文
共 50 条
  • [1] Consistent nonparametric Bayesian inference for discretely observed scalar diffusions
    Van der Meulen, Frank
    Van Zanten, Harry
    BERNOULLI, 2013, 19 (01) : 44 - 63
  • [2] NONPARAMETRIC BAYESIAN POSTERIOR CONTRACTION RATES FOR DISCRETELY OBSERVED SCALAR DIFFUSIONS
    Nickl, Richard
    Soehl, Jakob
    ANNALS OF STATISTICS, 2017, 45 (04): : 1664 - 1693
  • [3] Nonparametric Bayesian inference for ergodic diffusions
    Panzar, Laura
    van Zanten, Harry
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (12) : 4193 - 4199
  • [4] Parametric inference for discretely observed subordinate diffusions
    Guo, Weiwei
    Li, Lingfei
    STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2019, 22 (01) : 77 - 110
  • [5] Likelihood inference for discretely observed nonlinear diffusions
    Elerian, O
    Chib, S
    Shephard, N
    ECONOMETRICA, 2001, 69 (04) : 959 - 993
  • [6] NONPARAMETRIC BAYESIAN INFERENCE FOR REVERSIBLE MULTIDIMENSIONAL DIFFUSIONS
    Giordano, Matteo
    Ray, Kolyan
    ANNALS OF STATISTICS, 2022, 50 (05): : 2872 - 2898
  • [7] Parametric inference for discretely observed multidimensional diffusions with small diffusion coefficient
    Guy, Romain
    Laredo, Catherine
    Vergu, Elisabeta
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (01) : 51 - 80
  • [8] Computational Doob h-transforms for Online Filtering of Discretely Observed Diffusions
    Chopin, Nicolas
    Fulop, Andras
    Heng, Jeremy
    Thiery, Alexandre H.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 202, 2023, 202
  • [9] Quasi-maximum likelihood estimation of discretely observed diffusions
    Huang, Xiao
    ECONOMETRICS JOURNAL, 2011, 14 (02): : 241 - 256
  • [10] Estimation in Discretely Observed Diffusions Killed at a Threshold
    Bibbona, Enrico
    Ditlevsen, Susanne
    SCANDINAVIAN JOURNAL OF STATISTICS, 2013, 40 (02) : 274 - 293