Optimal Concavity of the Torsion Function

被引:10
作者
Henrot, Antoine [1 ]
Nitsch, Carlo [2 ]
Salani, Paolo [3 ]
Trombetti, Cristina [2 ]
机构
[1] Univ Lorraine, CNRS, UMR7502, Inst Elie Cartan Lorraine, Nancy, France
[2] Univ Napoli Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Naples, Italy
[3] Univ Firenze, Dipartimento Matemat & Informat U Dini, Florence, Italy
关键词
Torsion function; Optimal concavity; Ellipsoids; BOUNDARY-VALUE-PROBLEMS; SYMMETRY; SERRINS;
D O I
10.1007/s10957-018-1302-9
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
It is well known that the torsion function of a convex domain has a square root which is concave. The power one half is optimal in the sense that no greater power ensures concavity for every convex set. In this paper, we investigate concavity, not of a power of the torsion function itself, but of the complement to its maximum. Requiring that the torsion function enjoys such a property for the power one half leads to an unconventional overdetermined problem. Our main result is to show that solutions of this problem exist, if and only if they are quadratic polynomials, finding, in fact, a new characterization of ellipsoids.
引用
收藏
页码:26 / 35
页数:10
相关论文
共 20 条
[1]   Characterization of ellipsoids through an overdetermined boundary value problem of Monge-Ampere type [J].
Brandolini, B. ;
Gavitone, N. ;
Nitsch, C. ;
Trombetti, C. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 101 (06) :828-841
[2]   CONVEXITY PROPERTIES OF SOLUTIONS TO SOME CLASSICAL VARIATIONAL-PROBLEMS [J].
CAFFARELLI, LA ;
SPRUCK, J .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1982, 7 (11) :1337-1379
[3]  
Ciraolo G., SYMMETRY LINEAR STAB
[4]   Symmetry of minimizers with a level surface parallel to the boundary [J].
Ciraolo, Giulio ;
Magnanini, Rolando ;
Sakaguchi, Shigeru .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2015, 17 (11) :2789-2804
[5]   A NOTE ON SERRIN'S OVERDETERMINED PROBLEM [J].
Ciraolo, Giulio ;
Magnanini, Rolando .
KODAI MATHEMATICAL JOURNAL, 2014, 37 (03) :728-736
[6]  
Cupini G., 2017, APPL NUMER HARMON AN
[7]  
Cupini G., 2016, ATTI ACCAD NAZ LINCE, V27
[8]   Some fully nonlinear elliptic boundary value problems with ellipsoidal free boundaries [J].
Enache, Cristian ;
Sakaguchi, Shigeru .
MATHEMATISCHE NACHRICHTEN, 2011, 284 (14-15) :1872-1879
[9]   Some overdetermined boundary value problems with elliptical free boundaries [J].
Henrot, A ;
Philippin, GA .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 29 (02) :309-320
[10]  
KAWOHL B, 1985, LECT NOTES MATH, V1150, P1