Casimir Friction and Near-field Radiative Heat Transfer in Graphene Structures

被引:10
作者
Volokitin, A. I. [1 ,2 ]
机构
[1] Forschungszentrum Julich, Peter Grunberg Inst, D-52425 Julich, Germany
[2] Samara State Tech Univ, Dept Phys, Samara 443100, Russia
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES | 2017年 / 72卷 / 02期
基金
俄罗斯基础研究基金会;
关键词
Casimir force; Casimir friction; Near-field radiative heat transfer; FLUCTUATING ELECTROMAGNETIC-FIELD; FORCES; DISSIPATION; NANOSCALE; SYSTEMS; SHEETS; DRAG;
D O I
10.1515/zna-2016-0367
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The dependence of the Casimir friction force between a graphene sheet and a (amorphous) SiO2 substrate on the drift velocity of the electrons in the graphene sheet is studied. It is shown that the Casimir friction is strongly enhanced for the drift velocity above the threshold velocity when the friction is determined by the resonant excitation of the surface phonon-polaritons in the SiO2 substrate and the electron-hole pairs in graphene. The theory agrees well with the experimental data for the current-voltage dependence for unsuspended graphene on the SiO2 substrate. The theories of the Casimir friction and the near-field radiative energy transfer are used to study the heat generation and dissipation in graphene due to the interaction with phonon-polaritons in the (amorphous) SiO2 substrate and acoustic phonons in graphene. For suspended graphene, the energy transfer coefficient at nanoscale gap is similar to three orders of magnitude larger than the radiative heat transfer coefficient of the blackbody radiation limit.
引用
收藏
页码:171 / 180
页数:10
相关论文
共 50 条
  • [1] [Anonymous], 2011, CASIMIR PHYS
  • [2] [Anonymous], 2015, ELEMENTS FRICTION TH
  • [3] On van der Waals friction. II: Between atom and half-space
    Barton, Gabriel
    [J]. NEW JOURNAL OF PHYSICS, 2010, 12
  • [4] Casimir H B G., 1948, Proc. K. Ned. Akad. Wet., V51, P793, DOI DOI 10.4236/WJNSE.2015.52007
  • [5] Extraordinary optical transmission through subwavelength holes in a polaritonic silicon dioxide film
    Chen, Dye-Zone A.
    Hamam, Rafif
    Soljacic, Marin
    Joannopoulos, John D.
    Chen, Gang
    [J]. APPLIED PHYSICS LETTERS, 2007, 90 (18)
  • [6] Intrinsic and extrinsic performance limits of graphene devices on SiO2
    Chen, Jian-Hao
    Jang, Chaun
    Xiao, Shudong
    Ishigami, Masa
    Fuhrer, Michael S.
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (04) : 206 - 209
  • [7] Vacuum attraction, friction and heating of nanoparticles moving nearby a heated surface
    Dedkov, G. V.
    Kyasov, A. A.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (35)
  • [8] Fluctuation electromagnetic slowing down and heating of a small neutral particle moving in the field of equilibrium background radiation
    Dedkov, GV
    Kyasov, AA
    [J]. PHYSICS LETTERS A, 2005, 339 (3-5) : 212 - 216
  • [9] Energy Dissipation in Graphene Field-Effect Transistors
    Freitag, Marcus
    Steiner, Mathias
    Martin, Yves
    Perebeinos, Vasili
    Chen, Zhihong
    Tsang, James C.
    Avouris, Phaedon
    [J]. NANO LETTERS, 2009, 9 (05) : 1883 - 1888
  • [10] The rise of graphene
    Geim, A. K.
    Novoselov, K. S.
    [J]. NATURE MATERIALS, 2007, 6 (03) : 183 - 191