A variational eigenvalue solver on a photonic quantum processor

被引:2937
作者
Peruzzo, Alberto [1 ,2 ]
McClean, Jarrod [3 ]
Shadbolt, Peter [1 ,2 ]
Yung, Man-Hong [3 ,4 ]
Zhou, Xiao-Qi [1 ,2 ]
Love, Peter J. [5 ]
Aspuru-Guzik, Alan [3 ]
O'Brien, Jeremy L. [1 ,2 ]
机构
[1] Univ Bristol, Ctr Quantum Photon, HH Wills Phys Lab, Bristol BS8 1UB, Avon, England
[2] Univ Bristol, Dept Elect & Elect Engn, Bristol BS8 1UB, Avon, England
[3] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[4] Tsinghua Univ, Inst Interdisciplinary Informat Sci, Ctr Quantum Informat, Beijing 100084, Peoples R China
[5] Haverford Coll, Dept Phys, Haverford, PA 19041 USA
基金
英国工程与自然科学研究理事会; 中国国家自然科学基金;
关键词
COUPLED-CLUSTER; SIMULATIONS; COMPUTATION;
D O I
10.1038/ncomms5213
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum computers promise to efficiently solve important problems that are intractable on a conventional computer. For quantum systems, where the physical dimension grows exponentially, finding the eigenvalues of certain operators is one such intractable problem and remains a fundamental challenge. The quantum phase estimation algorithm efficiently finds the eigenvalue of a given eigenvector but requires fully coherent evolution. Here we present an alternative approach that greatly reduces the requirements for coherent evolution and combine this method with a new approach to state preparation based on ansatze and classical optimization. We implement the algorithm by combining a highly reconfigurable photonic quantum processor with a conventional computer. We experimentally demonstrate the feasibility of this approach with an example from quantum chemistry-calculating the ground-state molecular energy for He-H+. The proposed approach drastically reduces the coherence time requirements, enhancing the potential of quantum resources available today and in the near future.
引用
收藏
页数:7
相关论文
共 37 条
[1]   Simulations of many-body Fermi systems on a universal quantum computer [J].
Abrams, DS ;
Lloyd, S .
PHYSICAL REVIEW LETTERS, 1997, 79 (13) :2586-2589
[2]   Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors [J].
Abrams, DS ;
Lloyd, S .
PHYSICAL REVIEW LETTERS, 1999, 83 (24) :5162-5165
[3]  
[Anonymous], 1996, ELECT C COMPUTATIONA
[4]  
[Anonymous], 1999, TECH REPORT STANFORD
[5]  
[Anonymous], 2008, PREPRINT
[6]   Simulated quantum computation of molecular energies [J].
Aspuru-Guzik, A ;
Dutoi, AD ;
Love, PJ ;
Head-Gordon, M .
SCIENCE, 2005, 309 (5741) :1704-1707
[7]  
Aspuru-Guzik A, 2012, NAT PHYS, V8, P285, DOI [10.1038/NPHYS2253, 10.1038/nphys2253]
[8]   High-order quantum algorithm for solving linear differential equations [J].
Berry, Dominic W. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (10)
[9]  
Chuang I. N., 2000, Quantum Computation and Quantum Information
[10]  
Conn A. R., 1987, TRUST REGION METHODS, V1