共 50 条
P-gp is involved in the intestinal absorption and biliary excretion of afatinib in vitro and in rats
被引:17
|作者:
Zhang, Yan
[1
,3
]
Wang, Changyuan
[1
,2
]
Liu, Zhihao
[1
,2
]
Meng, Qiang
[1
,2
]
Huo, Xiaokui
[1
,2
]
Liu, Qi
[1
,2
]
Sun, Pengyuan
[1
,2
]
Yang, Xiaobo
[1
,2
]
Sun, Huijun
[1
,2
]
Ma, Xiaodong
[1
,2
]
Liu, Kexin
[1
,2
]
机构:
[1] Dalian Med Univ, Dept Clin Pharmacol, Coll Pharm, Dalian, Peoples R China
[2] Dalian Med Univ, Prov Key Lab Pharmacokinet & Transport, Dalian, Liaoning, Peoples R China
[3] Peking Univ, Hosp 3, Yanqing Hosp, Beijing, Peoples R China
基金:
中国国家自然科学基金;
关键词:
Pharmacokinetics;
Afatinib;
P-glycoprotein;
Intestinal absorption;
Biliary excretion;
DRUG-INTERACTIONS;
GLYCOPROTEIN;
PHARMACOKINETICS;
TRANSPORTERS;
CANCER;
CHEMORADIATION;
DISPOSITION;
INHIBITION;
EXPRESSION;
HEAD;
D O I:
10.1016/j.pharep.2017.10.005
中图分类号:
R9 [药学];
学科分类号:
1007 ;
摘要:
Background: Afatinib is an irreversible multi-targeted TKI, used in the treatment with EGFR mutated non-small cell lung cancer (NSCLC). The purpose of this study is to explore the molecular pharmacokinetic mechanism underlying the effect of P-gp inhibitors on the intestinal absorption and biliary excretion and to understand how P-gp inhibitors affect afatinib pharmacokinetics. Methods: Pharmacokinetics in vivo, in situ intestinal perfusion, perfused rat liver in situ, Caco-2 cells, P-gp ATPase activity, sandwich-cultured rat hepatocytes (SCRH) and transfected-cell transport were used in the evaluation. Results: P-gp inhibitor verapamil (Ver) markedly increased the plasma concentrations and significantly decreased the biliary excretion of afatinib in vivo. Ver increased the intestinal absorption and decreased biliary excretion of afatinib in situ single-pass intestinal perfusion studies and in situ perfused rat liver, respectively. The accumulation of afatinib in Caco-2 cells was enhanced by Ver and Cyclosporin A (CsA). The biliary excretion index (BEI) of afatinib in SCRH was decreased by Ver and CsA, respectively. The net efflux ratio of afatinib was 2.3 across vector-/MDR1-MDCKII cell monolayers and was decreased by P-gp inhibitor. The activity of P-gp ATPase was induced by afatinib and the K-m and V-max were 1.05 mu M and 59.88 nmol ATP/mg hP-gp/min, respectively. Conclusion: At least partly P-gp is involved in increasing the intestinal absorption and decreasing the biliary excretion of afatinib in rats. (C) 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Sp. z o. o. All rights reserved.
引用
收藏
页码:243 / 250
页数:8
相关论文