Microstructure-Dependent Local Fatigue Cracking Resistance of Bimodal Ti-6Al-4V Alloys

被引:6
|
作者
Zeng, Ling-Rong [1 ,2 ]
Lei, Li-Ming [3 ]
Yang, Jia [1 ,2 ]
Luo, Xue-Mei [1 ]
Zhang, Guang-Ping [1 ]
机构
[1] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, 72 Wenhua Rd Shenyang, Shenyang 110016, Liaoning, Peoples R China
[2] Univ Chinese Acad Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China
[3] AECC Shanghai Commercial Aircraft Engine Mfg Co L, 77 Hongyin Rd, Shanghai 201306, Peoples R China
基金
中国国家自然科学基金;
关键词
Crack growth rate; Fatigue; grain boundary; microstructure; Ti alloy; ALPHA/BETA-TITANIUM-ALLOY; GROWTH-BEHAVIOR; INITIATION; PROPAGATION; SURFACES; GEOMETRY; TEXTURE; SLIP;
D O I
10.1002/adem.201700702
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The fatigue crack growth behavior of the bimodal Ti-6Al-4V alloys with two different volume fractions of the primary phase (alpha(p)) of 76 and 36% is investigated by the in situ testing technique. The experimental results show that the crack growth rate of the alpha(p) = 36% Ti-6Al-4V alloy is lower than that of the alpha(p) = 76% one. The local fatigue crack growth rate is evidently decreased by the various boundaries including alpha(p) grain boundaries, boundaries between the alpha(p) phase and basketweave microstructure, and alpha/beta lamellar interfaces. A criterion associated with the boundary characteristics is obtained to evaluate the grain boundary resistance to the fatigue crack growth in the engineering alloys.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Evaluation of Subsurface Fatigue Crack Life in Forged Ti-6Al-4V Alloys at Cryogenic Temperatures
    Hamada, Makiko
    Umezawa, Osamu
    ISIJ INTERNATIONAL, 2009, 49 (01) : 124 - 131
  • [42] Effects of 3D microstructural distribution on short crack growth behavior in two bimodal Ti-6Al-4V alloys
    Hassanipour, M.
    Watanabe, S.
    Hirayama, K.
    Toda, H.
    Uesugi, K.
    Takeuchi, A.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 766
  • [43] Prediction of Microstructure Evolution for Additive Manufacturing of Ti-6Al-4V
    Yang, Xinyu
    Barrett, Richard A.
    Tong, Mingming
    Harrison, Noel M.
    Leen, Sean B.
    23RD INTERNATIONAL CONFERENCE ON MATERIAL FORMING, 2020, 47 : 1178 - 1183
  • [44] The effects of crystallographic orientation on fatigue crack initiation behavior in Ti-6Al-4V
    Sasaoka, Shun
    Arakawa, Jinta
    Akebono, Hiroyuki
    Sugeta, Atsushi
    Shirai, Yoshihisa
    Nakayama, Eisuke
    Kimura, Yukihiko
    INTERNATIONAL JOURNAL OF FATIGUE, 2018, 117 : 371 - 383
  • [45] Fatigue strength of Ti-6Al-4V alloys containing small artificial defects
    Matsunaga, H
    Murakami, Y
    Kubota, M
    Lee, JH
    MATERIALS SCIENCE RESEARCH INTERNATIONAL, 2003, 9 (04): : 263 - 269
  • [46] Nanosecond UV laser processing: Surface microgroove geometry and microstructure in Ti-6Al-4V alloys
    Mwenifumbo, S
    Morgan, N
    Perohe, A
    Chen, J
    Li, M
    Soboyejo, WO
    SURFACE ENGINEERING IN MATERIALS SCIENCE III, 2005, : 185 - 203
  • [47] Correlation between the Microstructure and Mechanical Properties of W-Bearing Ti-6Al-4V Alloys
    Ahiale, Godwin Kwame
    Kye, In-Seok
    Kwon, Young Sam
    Oh, Yong-Jun
    KOREAN JOURNAL OF METALS AND MATERIALS, 2021, 59 (06): : 357 - 364
  • [48] Microstructure and mechanical properties of highly deformed Ti-6Al-4V
    Gungor, MN
    Ucok, I
    Kramer, LS
    Dong, H
    Martin, NR
    Tack, WT
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2005, 410 : 369 - 374
  • [49] Effects of Cooling Rate and Stabilization Annealing on Fatigue Behavior of β-Processed Ti-6Al-4V Alloys
    Seo, Wongyu
    Jeong, Daeho
    Lee, Dongjun
    Sung, Hyokyung
    Kwon, Yongnam
    Kim, Sangshik
    METALS AND MATERIALS INTERNATIONAL, 2017, 23 (04) : 648 - 659
  • [50] Fracture Toughness of Ti-6Al-4V and Ti-6Al-4V ELI Alloys Fabricated by Electron Beam Melting With Different Orientation and Positions
    Ninerola, Ruben
    Giner, Eugenio
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2025, 48 (05) : 2339 - 2353