Generating stationary entangled states in superconducting qubits

被引:30
作者
Zhang, Jing [1 ,2 ]
Liu, Yu-xi [1 ,3 ]
Li, Chun-Wen [2 ]
Tarn, Tzyh-Jong [4 ]
Nori, Franco [1 ,3 ,5 ]
机构
[1] RIKEN, Inst Phys & Chem Res, Adv Sci Inst, Wako, Saitama 3510198, Japan
[2] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
[3] Japan Sci & Technol Agcy JST, CREST, Kawaguchi, Saitama 3320012, Japan
[4] Washington Univ, Dept Elect & Syst Engn, St Louis, MO 63130 USA
[5] Univ Michigan, Dept Phys, Ctr Theoret Phys, Ctr Study Complex Syst, Ann Arbor, MI 48109 USA
来源
PHYSICAL REVIEW A | 2009年 / 79卷 / 05期
基金
美国国家科学基金会; 中国博士后科学基金; 中国国家自然科学基金;
关键词
quantum computing; quantum entanglement; superconducting devices; PHONON SQUEEZED STATES; FLUX QUBIT; QUANTUM; DECOHERENCE; SUPPRESSION; DYNAMICS;
D O I
10.1103/PhysRevA.79.052308
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
When a two-qubit system is initially maximally entangled, two independent decoherence channels, one per qubit, would greatly reduce the entanglement of the two-qubit system when it reaches its stationary state. We propose a method on how to minimize such a loss of entanglement in open quantum systems. We find that the quantum entanglement of general two-qubit systems with controllable parameters can be controlled by tuning both the single-qubit parameters and the two-qubit coupling strengths. Indeed, the maximum fidelity F-max between the stationary entangled state, rho(infinity), and the maximally entangled state, rho(m), can be about 2/3 approximate to max{tr(rho(infinity)rho(m))}=F-max, corresponding to a maximum stationary concurrence, C-max, of about 1/3 approximate to C(rho(infinity))=C-max. This is significant because the quantum entanglement of the two-qubit system can be produced and kept, even for a long time. We apply our proposal to several types of two-qubit superconducting circuits and show how the entanglement of these two-qubit circuits can be optimized by varying experimentally controllable parameters.
引用
收藏
页数:15
相关论文
共 94 条
  • [1] ALICKI R, 1985, QUANTUM DYNAMICAL SE
  • [2] Controllability properties for finite dimensional quantum Markovian master equations
    Altafini, C
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (06) : 2357 - 2372
  • [3] Interqubit coupling mediated by a high-excitation-energy quantum object
    Ashhab, S.
    Niskanen, A. O.
    Harrabi, K.
    Nakamura, Y.
    Picot, T.
    de Groot, P. C.
    Harmans, C. J. P. M.
    Mooij, J. E.
    Nori, Franco
    [J]. PHYSICAL REVIEW B, 2008, 77 (01):
  • [4] Generalized switchable coupling for superconducting qubits using double resonance
    Ashhab, S.
    Matsuo, Shigemasa
    Hatakenaka, Noriyuki
    Nori, Franco
    [J]. PHYSICAL REVIEW B, 2006, 74 (18):
  • [5] Switchable coupling for superconducting qubits using double resonance in the presence of crosstalk
    Ashhab, S.
    Nori, Franco
    [J]. PHYSICAL REVIEW B, 2007, 76 (13)
  • [6] Quantum noise in the Josephson charge qubit
    Astafiev, O
    Pashkin, YA
    Nakamura, Y
    Yamamoto, T
    Tsai, JS
    [J]. PHYSICAL REVIEW LETTERS, 2004, 93 (26)
  • [7] Environment induced entanglement in Markovian dissipative dynamics
    Benatti, F
    Floreanini, R
    Piani, M
    [J]. PHYSICAL REVIEW LETTERS, 2003, 91 (07)
  • [8] Purification of noisy entanglement and faithful teleportation via noisy channels
    Bennett, CH
    Brassard, G
    Popescu, S
    Schumacher, B
    Smolin, JA
    Wootters, WK
    [J]. PHYSICAL REVIEW LETTERS, 1996, 76 (05) : 722 - 725
  • [9] Decoherence in a Josephson-junction qubit
    Berkley, AJ
    Xu, H
    Gubrud, MA
    Ramos, RC
    Anderson, JR
    Lobb, CJ
    Wellstood, FC
    [J]. PHYSICAL REVIEW B, 2003, 68 (06)
  • [10] Entangled macroscopic quantum states in two superconducting qubits
    Berkley, AJ
    Xu, H
    Ramos, RC
    Gubrud, MA
    Strauch, FW
    Johnson, PR
    Anderson, JR
    Dragt, AJ
    Lobb, CJ
    Wellstood, FC
    [J]. SCIENCE, 2003, 300 (5625) : 1548 - 1550