Topological Semigroups and their Prequantale Models

被引:1
|
作者
Zhao, Bin [1 ]
Xia, Changchun [1 ]
Wang, Kaiyun [1 ]
机构
[1] Shaanxi Normal Univ, Coll Math & Informat Sci, Xian 710119, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Topological semigroup; prequantale; Scott topology; prequantale model;
D O I
10.2298/FIL1719205Z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a condition (Delta) on topological semigroups, and prove that every T-1 topological semigroup satisfying condition (Delta) has a bounded complete algebraic prequantale model. On the basis of this result, we also show that every T-0 topological semigroup satisfying condition (Delta) can be embedded into a compact and locally compact sober topological semigroup.
引用
收藏
页码:6205 / 6210
页数:6
相关论文
共 50 条
  • [1] Continuous Prequantale Models of T1 Topological Semigroups
    Li, Hui
    Zhou, Xiangnan
    Li, Qingguo
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2019, 345 : 99 - 111
  • [2] Embedding of countable topological semigroups in simple countable connected topological semigroups
    Gutik O.V.
    Journal of Mathematical Sciences, 2001, 104 (5) : 1422 - 1427
  • [3] Topological Brandt semigroups
    H. Samea
    Semigroup Forum, 2013, 86 : 404 - 412
  • [4] Topological Brandt semigroups
    Samea, H.
    SEMIGROUP FORUM, 2013, 86 (02) : 404 - 412
  • [5] On topological Brandt semigroups
    O. V. Gutik
    K. P. Pavlyk
    A. R. Reiter
    Journal of Mathematical Sciences, 2012, 184 (1) : 1 - 11
  • [6] JOHNSON AMENABILITY FOR TOPOLOGICAL SEMIGROUPS
    Sadr, M. Maysami
    Pourabbas, A.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2010, 34 (A2): : 151 - 160
  • [7] Topological semigroups of matrix units
    Gutik, Oleg V.
    Pavlyk, Kateryna P.
    ALGEBRA & DISCRETE MATHEMATICS, 2005, (03): : 1 - 17
  • [8] Topological graph inverse semigroups
    Mesyan, Z.
    Mitchell, J. D.
    Morayne, M.
    Peresse, Y. H.
    TOPOLOGY AND ITS APPLICATIONS, 2016, 208 : 106 - 126
  • [9] Homotopy theory for topological semigroups
    Cerin, Z
    TOPOLOGY AND ITS APPLICATIONS, 2002, 123 (01) : 57 - 68
  • [10] Free subsemigroups in topological semigroups
    Doroshenko, Vadym
    SEMIGROUP FORUM, 2009, 79 (03) : 427 - 434