Electron density and currents of AlN/GaN high electron mobility transistors with thin GaN/AlN buffer layer

被引:19
作者
Bairamis, A. [1 ,2 ]
Zervos, Ch. [1 ,2 ]
Adikimenakis, A. [1 ]
Kostopoulos, A. [1 ]
Kayambaki, M. [1 ]
Tsagaraki, K. [1 ]
Konstantinidis, G. [1 ]
Georgakilas, A. [1 ,2 ]
机构
[1] Fdn Res & Technol Hellas FORTH, Microelect Res Grp, IESL, GR-71110 Iraklion, Crete, Greece
[2] Univ Crete, Dept Phys, GR-71003 Iraklion, Crete, Greece
关键词
GAN; HEMTS; NITRIDATION; POLARITY; VOLTAGE; LEAKAGE; WELL;
D O I
10.1063/1.4896026
中图分类号
O59 [应用物理学];
学科分类号
摘要
AlN/GaN high electron mobility transistor (HEMT) structures with thin GaN/AlN buffer layer have been analyzed theoretically and experimentally, and the effects of the AlN barrier and GaN buffer layer thicknesses on two-dimensional electron gas (2DEG) density and transport properties have been evaluated. HEMT structures consisting of [300 nm GaN/200 nm AlN] buffer layer on sapphire were grown by plasma-assisted molecular beam epitaxy and exhibited a remarkable agreement with the theoretical calculations, suggesting a negligible influence of the crystalline defects that increase near the heteroepitaxial interface. The 2DEG density varied from 6.8 x 10(12) to 2.1 x 10(13) cm(-2) as the AlN barrier thickness increased from 2.2 to 4.5 nm, while a 4.5 nm AlN barrier would result to 3.1 x 10(13) cm(-2) on a GaN buffer layer. The 3.0 nm AlN barrier structure exhibited the highest 2DEG mobility of 900 cm(2)/Vs for a density of 1.3 x 10(13) cm(-2). The results were also confirmed by the performance of 1 mu m gate-length transistors. The scaling of AlN barrier thickness from 1.5 nm to 4.5 nm could modify the drain-source saturation current, for zero gate-source voltage, from zero (normally off condition) to 0.63 A/mm. The maximum drain-source current was 1.1 A/mm for AlN barrier thickness of 3.0 nm and 3.7 nm, and the maximum extrinsic transconductance was 320 mS/mm for 3.0 nm AlN barrier. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 21 条
[1]   High electron mobility transistors based on the AlN/GaN heterojunction [J].
Adikimenakis, A. ;
Aretouli, K. E. ;
Iliopoulos, E. ;
Kostopoulos, A. ;
Tsagaraki, K. ;
Konstantinidis, G. ;
Georgakilas, A. .
MICROELECTRONIC ENGINEERING, 2009, 86 (4-6) :1071-1073
[2]   Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures [J].
Ambacher, O ;
Majewski, J ;
Miskys, C ;
Link, A ;
Hermann, M ;
Eickhoff, M ;
Stutzmann, M ;
Bernardini, F ;
Fiorentini, V ;
Tilak, V ;
Schaff, B ;
Eastman, LF .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (13) :3399-3434
[3]   High-mobility window for two-dimensional electron gases at ultrathin AlN/GaN heterojunctions [J].
Cao, Yu ;
Jena, Debdeep .
APPLIED PHYSICS LETTERS, 2007, 90 (18)
[4]   High-Speed AlN/GaN MOS-HFETs With Scaled ALD Al2O3 Gate Insulators [J].
Corrion, A. L. ;
Shinohara, K. ;
Regan, D. ;
Milosavljevic, I. ;
Hashimoto, P. ;
Willadsen, P. J. ;
Schmitz, A. ;
Kim, S. J. ;
Butler, C. M. ;
Brown, D. ;
Burnham, S. D. ;
Micovic, M. .
IEEE ELECTRON DEVICE LETTERS, 2011, 32 (08) :1062-1064
[5]   Effect of ohmic contacts on buffer leakage of GaN transistors [J].
Dora, Y. ;
Chakraborty, A. ;
Heikman, S. ;
McCarthy, L. ;
Keller, S. ;
DenBaars, S. P. ;
Mishra, U. K. .
IEEE ELECTRON DEVICE LETTERS, 2006, 27 (07) :529-531
[6]   AlGaN/GaN/AlN quantum-well field-effect transistors with highly resistive AlN epilayers - art. no. 073513 [J].
Fan, ZY ;
Li, J ;
Nakarmi, ML ;
Lin, JY ;
Jiang, HX .
APPLIED PHYSICS LETTERS, 2006, 88 (07)
[7]  
Georgakilas A, 2001, PHYS STATUS SOLIDI A, V188, P567, DOI 10.1002/1521-396X(200112)188:2<567::AID-PSSA567>3.0.CO
[8]  
2-W
[9]   Ultrathin Body InAlN/GaN HEMTs for High-Temperature (600 °C) Electronics [J].
Herfurth, Patrick ;
Maier, David ;
Lugani, Lorenzo ;
Carlin, Jean-Francois ;
Roesch, Rudolf ;
Men, Yakiv ;
Grandjean, Nicolas ;
Kohn, Erhard .
IEEE ELECTRON DEVICE LETTERS, 2013, 34 (04) :496-498
[10]   GaN on sapphire mesa technology [J].
Herfurth, Patrick ;
Men, Yakiv ;
Roesch, Rudolph ;
Carlin, Jean-Francois ;
Grandjean, Nicolas ;
Kohn, Erhard .
PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 9, NO 3-4, 2012, 9 (3-4) :945-948