Stability of the Camassa-Holm solitons

被引:353
作者
Constantin, A
Strauss, WA
机构
[1] Lund Univ, Dept Math, S-22100 Lund, Sweden
[2] Brown Univ, Dept Math, Providence, RI 02912 USA
[3] Brown Univ, Lefschetz Ctr Dynam Syst, Providence, RI 02912 USA
关键词
D O I
10.1007/s00332-002-0517-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the stability problem of the solitary wave solutions of a completely integrable equation that arises as a model for the unidirectional propagation of shallow water waves. We prove that the solitary waves possess the spectral properties of solitons and that their shapes are stable under small disturbances.
引用
收藏
页码:415 / 422
页数:8
相关论文
共 19 条
[1]  
[Anonymous], 1988, LINEAR OPERATORS
[2]  
[Anonymous], 1997, DISCRETE CONT DYN-A, DOI 10.3934/dcds.1997.3.419
[3]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[4]  
Camassa R., 1994, Adv. Appl. Mech., V31, P1, DOI DOI 10.1016/S0065-2156(08)70254-0
[5]  
Constantin A, 2000, COMMUN PUR APPL MATH, V53, P603
[6]   On the scattering problem for the Camassa-Holm equation [J].
Constantin, A .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2008) :953-970
[7]  
Constantin A., 1998, ANN SC NORM SUPER PI, V26, P303
[8]  
Drazin P.G., 1989, SOLITONS INTRO
[9]  
Faddeev LP, 1971, FUNCT ANAL APPL, V5, P280, DOI [10.1007/BF01086739, DOI 10.1007/BF01086739]
[10]   ON A CLASS OF PHYSICALLY IMPORTANT INTEGRABLE EQUATIONS [J].
FOKAS, AS .
PHYSICA D-NONLINEAR PHENOMENA, 1995, 87 (1-4) :145-150