On color-preserving automorphisms of Cayley graphs of odd square-free order

被引:4
作者
Dobson, Edward [1 ,2 ]
Hujdurovic, Ademir [2 ,3 ]
Kutnar, Klavdija [2 ,3 ]
Morris, Joy [4 ]
机构
[1] Mississippi State Univ, Dept Math & Stat, Mississippi State, MS 39762 USA
[2] Univ Primorska, UP IAM, Muzejski Trg 2, SI-6000 Koper, Slovenia
[3] Univ Primorska, UP FAMNIT, Glagoljaska 8, SI-6000 Koper, Slovenia
[4] Univ Lethbridge, Dept Math & Comp Sci, Lethbridge, AB T1K 3M4, Canada
关键词
Cayley graph; Color-preserving automorphism; Automorphism group; Affine automorphism; METACIRCULANT GRAPHS; PRODUCT;
D O I
10.1007/s10801-016-0711-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An automorphism of a Cayley graph of a group G with connection set S is color-preserving if or for every edge . If every color-preserving automorphism of is also affine, then is a Cayley color automorphism (CCA) graph. If every Cayley graph is a CCA graph, then G is a CCA group. HujduroviAc et al. have shown that every non-CCA group G contains a section isomorphic to the non-abelian group of order 21. We first show that there is a unique non-CCA Cayley graph of . We then show that if is a non-CCA graph of a group G of odd square-free order, then for some CCA group H, and .
引用
收藏
页码:407 / 422
页数:16
相关论文
共 12 条
[1]  
[Anonymous], 1986, CAMBRIDGE STUDIES AD
[2]  
[Anonymous], 1968, Finite Groups
[3]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[4]  
Dixon J.D., 1996, GRADUATE TEXTS MATH, V163, DOI DOI 10.1007/978-1-4612-0731-3
[5]   Automorphism groups of metacirculant graphs of order a product of two distinct primes [J].
Dobson, E .
COMBINATORICS PROBABILITY & COMPUTING, 2006, 15 (1-2) :105-130
[6]   Isomorphism problem for metacirculant graphs of order a product of distinct primes [J].
Dobson, E .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1998, 50 (06) :1176-1188
[7]   Minimal normal subgroups of transitive permutation groups of square-free degree [J].
Dobson, Edward ;
Malnic, Aleksander ;
Marusic, Dragan ;
Nowitz, Lewis A. .
DISCRETE MATHEMATICS, 2007, 307 (3-5) :373-385
[8]  
Hujdurovic A, 2016, ARS MATH CONTEMP, V11, P189
[9]  
Imrich Wilfried, 2008, Topics in graph theory: graphs and their cartesian product
[10]   A CLASSIFICATION OF SYMMETRICAL GRAPHS OF ORDER-3P [J].
WANG, RJ ;
XU, MY .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1993, 58 (02) :197-216