Temporal evolution of short-lived penumbral microjets

被引:6
作者
Siu-Tapia, A. L. [1 ]
Rubio, L. R. Bellot [1 ]
Suarez, D. Orozco [1 ]
Gafeira, R. [1 ,2 ]
机构
[1] Inst Astrofis Andalucia IAA CSIC, Apdo 3004, Granada 18080, Spain
[2] Univ Coimbra, CITEUC Ctr Earth & Space Res, Geophys & Astron Observ, P-3040004 Coimbra, Portugal
基金
瑞典研究理事会;
关键词
sunspots; Sun: chromosphere; Sun: magnetic fields; JET-LIKE FEATURES; SOLAR; MISSION;
D O I
10.1051/0004-6361/202038370
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. Penumbral microjets (PMJs) is the name given to elongated jet-like brightenings observed in the chromosphere above sunspot penumbrae. They are transient events that last from a few seconds to several minutes, and their origin is presumed to be related to magnetic reconnection processes. Previous studies have mainly focused on their morphological and spectral characteristics, and more recently on their spectropolarimetric signals during the maximum brightness stage. Studies addressing the temporal evolution of PMJs have also been carried out, but they are based on spatial and spectral time variations only.Aims. Here we investigate, for the first time, the temporal evolution of the polarization signals produced by short-lived PMJs (lifetimes < 2 min) to infer how the magnetic field vector evolves in the upper photosphere and mid-chromosphere.Methods. We use fast-cadence spectropolarimetric observations of the Ca II 854.2 nm line taken with the CRisp Imaging Spectropolarimeter at the Swedish 1 m Solar Telescope. The weak-field approximation (WFA) is used to estimate the strength and inclination of the magnetic field vector. By separating the Ca II 854.2 nm line into two different wavelength domains to account for the chromospheric origin of the line core and the photospheric contribution to the wings, we infer the height variation of the magnetic field vector.Results. The WFA reveals larger magnetic field changes in the upper photosphere than in the chromosphere during the PMJ maximum brightness stage. In the photosphere, the magnetic field inclination and strength undergo a transient increase for most PMJs, but in 25% of the cases the field strength decreases during the brightening. In the chromosphere, the magnetic field tends to be slightly stronger during the PMJs.Conclusions. The propagation of compressive perturbation fronts followed by a rarefaction phase in the aftershock region may explain the observed behavior of the magnetic field vector. The fact that such behavior varies among the analyzed PMJs could be a consequence of the limited temporal resolution of the observations and the fast-evolving nature of the PMJs.
引用
收藏
页数:17
相关论文
共 40 条
[1]   Magnetic Structure of Sunspots [J].
Borrero, Juan M. ;
Ichimoto, Kiyoshi .
LIVING REVIEWS IN SOLAR PHYSICS, 2011, 8 (04)
[2]   The Dark Side of Penumbral Microjets: Observations in Hα [J].
Buehler, D. ;
Pozuelo, S. Esteban ;
Rodriguez, J. de la Cruz ;
Scharmer, G. B. .
ASTROPHYSICAL JOURNAL, 2019, 876 (01)
[3]   The solar chromosphere at high resolution with IBIS -: I.: New insights from the Ca II 854.2 nm line [J].
Cauzzi, G. ;
Reardon, K. P. ;
Uitenbroek, H. ;
Cavallini, F. ;
Falchi, A. ;
Falciani, R. ;
Janssen, K. ;
Rimmele, T. ;
Vecchio, A. ;
Woeger, F. .
ASTRONOMY & ASTROPHYSICS, 2008, 480 (02) :515-526
[4]   The solar chromosphere at high resolution with IBIS IV. Dual-line evidence of heating in chromospheric network [J].
Cauzzi, G. ;
Reardon, K. ;
Rutten, R. J. ;
Tritschler, A. ;
Uitenbroek, H. .
ASTRONOMY & ASTROPHYSICS, 2009, 503 (02) :577-587
[5]   On the Weak Field Approximation for Ca 8542 Å [J].
Centeno, Rebecca .
ASTROPHYSICAL JOURNAL, 2018, 866 (02)
[6]   INVERSION OF STOKES PROFILES [J].
COBO, BR ;
INIESTA, JCD .
ASTROPHYSICAL JOURNAL, 1992, 398 (01) :375-385
[7]  
Collados M., 2013, Highlights of Spanish Astrophysics, VVII., P808
[8]   Microjets in the penumbra of a sunspot [J].
Drews, Ainar ;
van der Voort, Luc Rouppe .
ASTRONOMY & ASTROPHYSICS, 2017, 602
[9]   PROPERTIES OF SUPERSONIC EVERSHED DOWNFLOWS [J].
Esteban Pozuelo, S. ;
Bellot Rubio, L. R. ;
Rodriguez, J. de la Cruz .
ASTROPHYSICAL JOURNAL, 2016, 832 (02)
[10]   ENERGY-BALANCE IN THE SOLAR TRANSITION REGION .3. HELIUM EMISSION IN HYDROSTATIC, CONSTANT-ABUNDANCE MODELS WITH DIFFUSION [J].
FONTENLA, JM ;
AVRETT, EH ;
LOESER, R .
ASTROPHYSICAL JOURNAL, 1993, 406 (01) :319-345