Analysis of a p-version finite volume method for 1D elliptic problems
被引:0
作者:
Cao, Waixiang
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Computat Sci Res Ctr, Beijing 100084, Peoples R ChinaBeijing Computat Sci Res Ctr, Beijing 100084, Peoples R China
Cao, Waixiang
[1
]
Zhang, Zhimin
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Computat Sci Res Ctr, Beijing 100084, Peoples R China
Wayne State Univ, Dept Math, Detroit, MI 48202 USABeijing Computat Sci Res Ctr, Beijing 100084, Peoples R China
Zhang, Zhimin
[1
,2
]
Zou, Qingsong
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Coll Math & Sci Comp, Guangzhou 510275, Guangdong, Peoples R China
Sun Yat Sen Univ, Guangdong Prov Key Lab Computat Sci, Guangzhou 510275, Guangdong, Peoples R ChinaBeijing Computat Sci Res Ctr, Beijing 100084, Peoples R China
Zou, Qingsong
[3
,4
]
机构:
[1] Beijing Computat Sci Res Ctr, Beijing 100084, Peoples R China
[2] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
[3] Sun Yat Sen Univ, Coll Math & Sci Comp, Guangzhou 510275, Guangdong, Peoples R China
[4] Sun Yat Sen Univ, Guangdong Prov Key Lab Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
In this work, we present and analyze a p-version finite volume method (RIM) for elliptic problems in the one dimensional setting. Under some regularity assumptions of the exact solution, it is shown that the p-version FV solution converges with exponential rates under H-1, L-2 and L-oe-norms. Superconvergence properties at nodal, Lobatto and Gauss points have been also discussed. Numerical results are presented to support our theoretical findings. (c) 2013 Elsevier B.V. All rights reserved.