Analysis of a p-version finite volume method for 1D elliptic problems

被引:0
作者
Cao, Waixiang [1 ]
Zhang, Zhimin [1 ,2 ]
Zou, Qingsong [3 ,4 ]
机构
[1] Beijing Computat Sci Res Ctr, Beijing 100084, Peoples R China
[2] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
[3] Sun Yat Sen Univ, Coll Math & Sci Comp, Guangzhou 510275, Guangdong, Peoples R China
[4] Sun Yat Sen Univ, Guangdong Prov Key Lab Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
p-version; Superconvergence; Finite volume method; ELEMENT-METHOD; SUPERCONVERGENCE;
D O I
10.1016/j.cam.2013.09.044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we present and analyze a p-version finite volume method (RIM) for elliptic problems in the one dimensional setting. Under some regularity assumptions of the exact solution, it is shown that the p-version FV solution converges with exponential rates under H-1, L-2 and L-oe-norms. Superconvergence properties at nodal, Lobatto and Gauss points have been also discussed. Numerical results are presented to support our theoretical findings. (c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:17 / 32
页数:16
相关论文
共 50 条