Seed-mediated shape evolution of gold nanomaterials: from spherical nanoparticles to polycrystalline nanochains and single-crystalline nanowires

被引:16
作者
Qiu, Penghe [1 ]
Mao, Chuanbin [1 ]
机构
[1] Univ Oklahoma, Dept Chem & Biochem, Norman, OK 73018 USA
基金
美国国家科学基金会;
关键词
Gold nanoparticles; Nanochains; Nanowires; Oriented attachment; Nanostructure; Synthesis; ONE-DIMENSIONAL NANOSTRUCTURES; IMPERFECT ORIENTED ATTACHMENT; ATOMIC-FORCE MICROSCOPY; CONTROLLED NUCLEATION; PLASMON RESONANCE; AQUEOUS-SOLUTION; ASPECT-RATIO; WAVE-GUIDES; NANORODS; GROWTH;
D O I
10.1007/s11051-008-9465-1
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We studied the kinetics of the reduction of a gold precursor (HAuCl4) and the effect of the molar ratio (R) of sodium citrate, which was introduced from a seed solution, and the gold precursor on the shape evolution of gold nanomaterials in the presence of preformed 13 nm gold nanoparticles as seeds. The reduction of the gold precursor by sodium citrate was accelerated due to the presence of gold seeds. Nearly single-crystalline gold nanowires were formed at a very low R value (R = 0.16) in the presence of the seeds as a result of the oriented attachment of the growing gold nanoparticles. At a higher R value (R = 0.33), gold nanochains were formed due to the non-oriented attachment of gold nanoparticles. At a much higher R value (R = 1.32), only larger spherical gold nanoparticles grown from the seeds were found. In the absence of gold seeds, no single-crystalline nanowires were formed at the same R value. Our results indicate that the formation of the 1D nanostructures (nanochains and nanowires) at low R values is due to the attachment of gold nanoparticles along one direction, which is driven by the surface energy reduction, nanoparticle attraction, and dipole-dipole interaction between adjacent nanoparticles.
引用
收藏
页码:885 / 894
页数:10
相关论文
共 50 条
[1]   Gold nanowire formation of 2-dimensional network structure with electric conductivity [J].
Adachi, M ;
Mori, K ;
Sato, Y ;
Pei, LH .
JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 2004, 37 (05) :604-608
[2]   Optical absorption spectra of nanocrystal gold molecules [J].
Alvarez, MM ;
Khoury, JT ;
Schaaff, TG ;
Shafigullin, MN ;
Vezmar, I ;
Whetten, RL .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (19) :3706-3712
[3]   STUDY OF ANION ADSORPTION AT THE GOLD-AQUEOUS SOLUTION INTERFACE BY ATOMIC-FORCE MICROSCOPY [J].
BIGGS, S ;
MULVANEY, P ;
ZUKOSKI, CF ;
GRIESER, F .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1994, 116 (20) :9150-9157
[4]   THE ROLE OF COLLOIDAL STABILITY IN THE FORMATION OF GOLD SOLS [J].
BIGGS, S ;
CHOW, MK ;
ZUKOSKI, CF ;
GRIESER, F .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1993, 160 (02) :511-513
[5]   Hydroxylamine seeding of colloidal Au nanoparticles in solution and on surfaces [J].
Brown, KR ;
Natan, MJ .
LANGMUIR, 1998, 14 (04) :726-728
[6]   An improved synthesis of high-aspect-ratio gold nanorods [J].
Busbee, BD ;
Obare, SO ;
Murphy, CJ .
ADVANCED MATERIALS, 2003, 15 (05) :414-+
[7]   The shape transition of gold nanorods [J].
Chang, SS ;
Shih, CW ;
Chen, CD ;
Lai, WC ;
Wang, CRC .
LANGMUIR, 1999, 15 (03) :701-709
[8]   Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles [J].
Cho, KS ;
Talapin, DV ;
Gaschler, W ;
Murray, CB .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (19) :7140-7147
[9]   CONTROLLED NUCLEATION FOR REGULATION OF PARTICLE-SIZE IN MONODISPERSE GOLD SUSPENSIONS [J].
FRENS, G .
NATURE-PHYSICAL SCIENCE, 1973, 241 (105) :20-22
[10]   Two-dimensional arrays of colloidal gold particles: A flexible approach to macroscopic metal surfaces [J].
Grabar, KC ;
Allison, KJ ;
Baker, BE ;
Bright, RM ;
Brown, KR ;
Freeman, RG ;
Fox, AP ;
Keating, CD ;
Musick, MD ;
Natan, MJ .
LANGMUIR, 1996, 12 (10) :2353-2361