Atomic layer deposition of amorphous TiO2 on graphene as an anode for Li-ion batteries

被引:80
作者
Ban, Chunmei [1 ]
Xie, Ming [2 ,3 ]
Sun, Xiang [4 ]
Travis, Jonathan J. [2 ,3 ]
Wang, Gongkai [4 ]
Sun, Hongtao [4 ]
Dillon, Anne C. [1 ]
Lian, Jie [4 ]
George, Steven M. [2 ,3 ]
机构
[1] Natl Renewable Energy Lab, Golden, CO 80401 USA
[2] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA
[3] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA
[4] Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, Troy, NY 12180 USA
基金
美国国家科学基金会;
关键词
BINARY REACTION SEQUENCE; HIGH AREAL CAPACITY; LITHIUM-STORAGE; ANATASE TIO2; PHOTOCATALYTIC ACTIVITY; CARBON NANOTUBES; THIN-FILMS; OXIDE; GRAPHITE; NANOPARTICLES;
D O I
10.1088/0957-4484/24/42/424002
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Atomic layer deposition (ALD) was used to deposit TiO2 anode material on high surface area graphene (reduced graphene oxide) sheets for Li-ion batteries. An Al2O3 ALD ultrathin layer was used as an adhesion layer for conformal deposition of the TiO2 ALD films at 120 degrees C onto the conducting graphene sheets. The TiO2 ALD films on the Al2O3 ALD adhesion layer were nearly amorphous and conformal to the graphene sheets. These nanoscale TiO2 coatings minimized the effect of the low diffusion coefficient of lithium ions in bulk TiO2. The TiO2 ALD films exhibited stable capacities of similar to 120 mAh g(-1) and similar to 100 mAh g(-1) at high cycling rates of 1 A g(-1) and 2 A g(-1), respectively. The TiO2 ALD films also displayed excellent cycling stability with similar to 95% of the initial capacity remaining after 500 cycles. These results illustrate that ALD can provide a useful method to deposit electrode materials on high surface area substrates for Li-ion batteries.
引用
收藏
页数:6
相关论文
共 50 条
[31]   Hollow Nanostructured Anode Materials for Li-Ion Batteries [J].
Liu, Jun ;
Xue, Dongfeng .
NANOSCALE RESEARCH LETTERS, 2010, 5 (10) :1525-1534
[32]   Stabilizing an amorphous V2O5/carbon nanotube paper electrode with conformal TiO2 coating by atomic layer deposition for lithium ion batteries [J].
Xie, Ming ;
Sun, Xiang ;
Sun, Hongtao ;
Porcelli, Tim ;
George, Steven M. ;
Zhou, Yun ;
Lian, Jie .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (02) :537-544
[33]   TiO2 nanoparticles on nitrogen-doped graphene as anode material for lithium ion batteries [J].
Li, Dan ;
Shi, Dongqi ;
Liu, Zongwen ;
Liu, Huakun ;
Guo, Zaiping .
JOURNAL OF NANOPARTICLE RESEARCH, 2013, 15 (05)
[34]   Ultrafine TiO2 nanoparticles on reduced graphene oxide as anode materials for lithium ion batteries [J].
Yan, Litao ;
Yu, Jiuling ;
Luo, Hongmei .
APPLIED MATERIALS TODAY, 2017, 8 :31-34
[35]   Advances on synthesis and performance of Li-Ion anode batteries-a review [J].
Hossain, Md. Helal ;
Chowdhury, Mohammad Asaduzzaman ;
Hossain, Nayem ;
Islam, Md. Aminul ;
Mobarak, Md Hosne ;
Hasan, Mehedi ;
Khan, Julhas .
CHEMICAL ENGINEERING JOURNAL ADVANCES, 2024, 17
[36]   Highly conductive graphene-modified TiO2 hierarchical film electrode for flexible Li-ion battery anode [J].
Luo, Hao ;
Xu, Chunyang ;
Wang, Bo ;
Jin, Fan ;
Wang, Lei ;
Liu, Tong ;
Zhou, Yu ;
Wang, Dianlong .
ELECTROCHIMICA ACTA, 2019, 313 :10-19
[37]   An alumina stabilized ZnO-graphene anode for lithium ion batteries via atomic layer deposition [J].
Yu, Mingpeng ;
Wang, Aiji ;
Wang, Yinshu ;
Li, Chun ;
Shi, Gaoquan .
NANOSCALE, 2014, 6 (19) :11419-11424
[38]   Zn2GeO4 Nanorods@Graphene Composite as Anode Materials for Li-ion Batteries [J].
Tong Zhenkun ;
Fang Shan ;
Zheng Hao ;
Zhang Xiaogang .
ACTA CHIMICA SINICA, 2016, 74 (02) :185-190
[39]   A High Energy and Power Li-Ion Capacitor Based on a TiO2 Nanobelt Array Anode and a Graphene Hydrogel Cathode [J].
Wang, Huanwen ;
Guan, Cao ;
Wang, Xuefeng ;
Fan, Hong Jin .
SMALL, 2015, 11 (12) :1470-1477
[40]   Ultrathin Direct Atomic Layer Deposition on Composite Electrodes for Highly Durable and Safe Li-Ion Batteries [J].
Jung, Yoon Seok ;
Cavanagh, Andrew S. ;
Riley, Leah A. ;
Kang, Sun-Ho ;
Dillon, Anne C. ;
Groner, Markus D. ;
George, Steven M. ;
Lee, Se-Hee .
ADVANCED MATERIALS, 2010, 22 (19) :2172-+