Atomic layer deposition of amorphous TiO2 on graphene as an anode for Li-ion batteries

被引:80
作者
Ban, Chunmei [1 ]
Xie, Ming [2 ,3 ]
Sun, Xiang [4 ]
Travis, Jonathan J. [2 ,3 ]
Wang, Gongkai [4 ]
Sun, Hongtao [4 ]
Dillon, Anne C. [1 ]
Lian, Jie [4 ]
George, Steven M. [2 ,3 ]
机构
[1] Natl Renewable Energy Lab, Golden, CO 80401 USA
[2] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA
[3] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA
[4] Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, Troy, NY 12180 USA
基金
美国国家科学基金会;
关键词
BINARY REACTION SEQUENCE; HIGH AREAL CAPACITY; LITHIUM-STORAGE; ANATASE TIO2; PHOTOCATALYTIC ACTIVITY; CARBON NANOTUBES; THIN-FILMS; OXIDE; GRAPHITE; NANOPARTICLES;
D O I
10.1088/0957-4484/24/42/424002
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Atomic layer deposition (ALD) was used to deposit TiO2 anode material on high surface area graphene (reduced graphene oxide) sheets for Li-ion batteries. An Al2O3 ALD ultrathin layer was used as an adhesion layer for conformal deposition of the TiO2 ALD films at 120 degrees C onto the conducting graphene sheets. The TiO2 ALD films on the Al2O3 ALD adhesion layer were nearly amorphous and conformal to the graphene sheets. These nanoscale TiO2 coatings minimized the effect of the low diffusion coefficient of lithium ions in bulk TiO2. The TiO2 ALD films exhibited stable capacities of similar to 120 mAh g(-1) and similar to 100 mAh g(-1) at high cycling rates of 1 A g(-1) and 2 A g(-1), respectively. The TiO2 ALD films also displayed excellent cycling stability with similar to 95% of the initial capacity remaining after 500 cycles. These results illustrate that ALD can provide a useful method to deposit electrode materials on high surface area substrates for Li-ion batteries.
引用
收藏
页数:6
相关论文
共 49 条
[1]   Preparation of titania/carbon nanotube composites using supercritical ethanol and their photocatalytic activity for phenol degradation under visible light irradiation [J].
An, Guimin ;
Ma, Wanhong ;
Sun, Zhenyu ;
Liu, Zhimin ;
Han, Buxing ;
Miao, Shiding ;
Miao, Zhenjiang ;
Ding, Kunlun .
CARBON, 2007, 45 (09) :1795-1801
[2]   Lithium Storage in Amorphous TiO2 Nanoparticles [J].
Borghols, Wouter J. H. ;
Luetzenkirchen-Hecht, Dirk ;
Haake, Ullrich ;
Chan, Wingkee ;
Lafont, Ugo ;
Kelder, Erik M. ;
van Eck, Ernst R. H. ;
Kentgens, Arno P. M. ;
Mulder, Fokko M. ;
Wagemaker, Marnix .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (05) :A582-A588
[3]   KINETIC-STUDY OF LITHIUM ELECTROINSERTION IN TITANIUM-OXIDE THIN-FILMS [J].
CANTAO, MP ;
CISNEROS, JI ;
TORRESI, RM .
JOURNAL OF PHYSICAL CHEMISTRY, 1994, 98 (18) :4865-4869
[4]   Atomic layer deposition on gram quantities of multi-walled carbon nanotubes [J].
Cavanagh, Andrew S. ;
Wilson, Christopher A. ;
Weimer, Alan W. ;
George, Steven M. .
NANOTECHNOLOGY, 2009, 20 (25)
[5]   Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves [J].
Chen, Wufeng ;
Yan, Lifeng ;
Bangal, Prakriti R. .
CARBON, 2010, 48 (04) :1146-1152
[6]   MWCNT/V2O5 Core/Shell Sponge for High Areal Capacity and Power Density Li-Ion Cathodes [J].
Chen, Xinyi ;
Zhu, Hongli ;
Chen, Yu-Chen ;
Shang, Yuanyuan ;
Cao, Anyuan ;
Hu, Liangbing ;
Rubloff, Gary W. .
ACS NANO, 2012, 6 (09) :7948-7955
[7]   SURFACE-CHEMISTRY OF AL2O3 DEPOSITION USING AL(CH3)(3) AND H2O IN A BINARY REACTION SEQUENCE [J].
DILLON, AC ;
OTT, AW ;
WAY, JD ;
GEORGE, SM .
SURFACE SCIENCE, 1995, 322 (1-3) :230-242
[8]   Conformal coating on ultrahigh-aspect-ratio nanopores of anodic alumina by atomic layer deposition [J].
Elam, JW ;
Routkevitch, D ;
Mardilovich, PP ;
George, SM .
CHEMISTRY OF MATERIALS, 2003, 15 (18) :3507-3517
[9]   Comparison of the rate capability of nanostructured amorphous and anatase TiO2 for lithium insertion using anodic TiO2 nanotube arrays [J].
Fang, Hai-Tao ;
Liu, Min ;
Wang, Da-Wei ;
Sun, Tao ;
Guan, Dong-Sheng ;
Li, Feng ;
Zhou, Jigang ;
Sham, Tsun-Kong ;
Cheng, Hui-Ming .
NANOTECHNOLOGY, 2009, 20 (22)
[10]   Atomic layer deposition on suspended single-walled carbon nanotubes via gas-phase noncovalent functionalization [J].
Farmer, DB ;
Gordon, RG .
NANO LETTERS, 2006, 6 (04) :699-703