Flexible MXene/Silver Nanowire-Based Transparent Conductive Film with Electromagnetic Interference Shielding and Electro-Photo-Thermal Performance

被引:281
作者
Zhou, Bing [1 ]
Su, Mengjie [1 ]
Yang, Daozheng [1 ]
Han, Gaojie [1 ]
Feng, Yuezhan [1 ]
Wang, Bo [1 ]
Ma, Jialu [2 ]
Ma, Jianmin [3 ]
Liu, Chuntai [1 ,2 ]
Shen, Changyu [1 ,4 ]
机构
[1] Zhengzhou Univ, Natl Engn Res Ctr Adv Polymer Proc Technol, Key Lab Mat Proc & Mold, Minist Educ, Zhengzhou 450002, Henan, Peoples R China
[2] China Astronauts Res & Training Ctr, Natl Key Lab Human Factors Engn, Beijing 100094, Peoples R China
[3] Hunan Univ, Sch Phys & Elect, Key Lab Micro Nanooptoelect Devices, Minist Educ, Changsha 410022, Peoples R China
[4] Dalian Univ Technol, State Key Lab Struct Anal Ind Equipment, Dalian 116024, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
multifunctional TCF; interfacial adhesive; EMI shielding; AgNW; MXene; GRAPHENE; HEATERS; COMPOSITES; EFFICIENT; GRIDS; TI3C2;
D O I
10.1021/acsami.0c09020
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Transparent conductive film (TCF) is promising for optoelectronic instrument applications. However, designing a robust, stable, and flexible TCF that can shield electromagnetic waves and work in harsh conditions remains a challenge. Herein, a multifunctional and flexible TCF with effective electromagnetic interference shielding (EMI) performance and outstanding electro-photo-thermal effect is proposed by orderly coating Ti3C2Tx MXene and a silver nanowire (AgNW) hybrid conductive network using a simple and scalable solution-processed method. Typically, the air-plasma-treated polycarbonate (PC) film was sequentially spray-coated with MXene and AgNW to construct a highly conductive network, which was transferred and partly embedded into an ultrathin poly(vinyl alcohol) (PVA) film using spin coating coupled with hot pressing to enhance the interfacial adhesion. The peeled MXene/AgNW-PVA TCF exhibits an optimal optical and electrical performance of sheet resistance 18.3 Omega/sq and transmittance 52.3%. As a consequence, the TCF reveals an effective EMI shielding efficiency of 32 dB in X-band with strong interfacial adhesion and satisfactory flexibility. Moreover, the high electrical conductivity and localized surface plasmon resonance (LSPR) effect of hybrid conductive network endow the TCF with low-voltage-driven Joule heating performance and excellent photothermal effect, respectively, which can ensure the normal functioning under extreme cold condition. In view of the comprehensive performance, this work offers new solutions for next-generation transparent EMI shielding challenges.
引用
收藏
页码:40859 / 40869
页数:11
相关论文
共 72 条
[41]   Transparent Conducting Graphene Hybrid Films To Improve Electromagnetic Interference (EMI) Shielding Performance of Graphene [J].
Ma, Limin ;
Lu, Zhengang ;
Tan, Jiubin ;
Liu, Jian ;
Ding, Xuemei ;
Black, Nicola ;
Li, Tianyi ;
Gallop, John ;
Hao, Ling .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (39) :34221-34229
[42]   Carbon Composite Networks with Ultrathin Skin Layers of Graphene Film for Exceptional Electromagnetic Interference Shielding [J].
Ma, Xiaohui ;
Li, Yang ;
Shen, Bin ;
Zhang, Lihua ;
Chen, Zeping ;
Liu, Yinfeng ;
Zhai, Wentao ;
Zheng, Wenge .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (44) :38255-38263
[43]   High-Performance and Rapid-Response Electrical Heaters Based on Ultraflexible, Heat-Resistant, and Mechanically Strong Aramid Nanofiber/Ag Nanowire Nanocomposite Papers [J].
Ma, Zhonglei ;
Kang, Songlei ;
Ma, Jianzhong ;
Shao, Liang ;
Wei, Ajing ;
Liang, Chaobo ;
Gu, Junwei ;
Yang, Bin ;
Dong, Diandian ;
Wei, Linfeng ;
Ji, Zhanyou .
ACS NANO, 2019, 13 (07) :7578-7590
[44]   Shape-Adaptable 2D Titanium Carbide (MXene) Heater [J].
Park, Tae Hyun ;
Yu, Seunggun ;
Koo, Min ;
Kim, Hyerim ;
Kim, Eui Hyuk ;
Park, Jung-Eun ;
Ok, Byeori ;
Kim, Byeonggwan ;
Noh, Sung Hyun ;
Park, Chanho ;
Kim, Eunkyoung ;
Koo, Chong Min ;
Park, Cheolmin .
ACS NANO, 2019, 13 (06) :6835-6844
[45]   Photothermal Membrane Distillation for Seawater Desalination [J].
Politano, Antonio ;
Argurio, Pietro ;
Di Profio, Gianluca ;
Sanna, Vanna ;
Cupolillo, Anna ;
Chakraborty, Sudip ;
Arafat, Hassan A. ;
Curcio, Efrem .
ADVANCED MATERIALS, 2017, 29 (02)
[46]   A one-step route to Ag nanowires with a diameter below 40 nm and an aspect ratio above 1000 [J].
Ran, Yunxia ;
He, Weiwei ;
Wang, Ke ;
Ji, Shulin ;
Ye, Changhui .
CHEMICAL COMMUNICATIONS, 2014, 50 (94) :14877-14880
[47]   Automated Scalpel Patterning of Solution Processed Thin Films for Fabrication of Transparent MXene Microsupercapacitors [J].
Salles, Pol ;
Quain, Evan ;
Kurra, Narendra ;
Sarycheva, Asia ;
Gogotsi, Yury .
SMALL, 2018, 14 (44)
[48]   Electromagnetic interference shielding with 2D transition metal carbides (MXenes) [J].
Shahzad, Faisal ;
Alhabeb, Mohamed ;
Hatter, Christine B. ;
Anasori, Babak ;
Hong, Soon Man ;
Koo, Chong Min ;
Gogotsi, Yury .
SCIENCE, 2016, 353 (6304) :1137-1140
[49]   Flexible and Transparent Electrothermal Film Heaters Based on Graphene Materials [J].
Sui, Dong ;
Huang, Yi ;
Huang, Lu ;
Liang, Jiajie ;
Ma, Yanfeng ;
Chen, Yongsheng .
SMALL, 2011, 7 (22) :3186-3192
[50]   Flexible silver nanowire/carbon fiber felt metacomposites with weakly negative permittivity behavior [J].
Sun, Kai ;
Wang, Linying ;
Wang, Zongxiang ;
Wu, Xinfeng ;
Fan, Guohua ;
Wang, Zhongyang ;
Cheng, Chuanbing ;
Fan, Runhua ;
Dong, Mengyao ;
Guo, Zhanhu .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (09) :5114-5122