Nonlinearity degree of short-term heart rate variability signal

被引:6
作者
Bian, CH [1 ]
Ning, XB [1 ]
机构
[1] Nanjing Univ, Inst Biomed Elect Engn, State Key Lab Modern Acoust, Nanjing 210093, Peoples R China
来源
CHINESE SCIENCE BULLETIN | 2004年 / 49卷 / 05期
关键词
HRV; NAIR model; nonlinearity degree; heartheat interval time series;
D O I
10.1360/03we0223
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A nonlinear autoregressive (NAR) model is built to model the heartbeat interval time series and the optimum model degree is proposed to be taken to evaluate the nonlinearity degree of heart rate variability (HRV). A group of healthy persons are studied and the results indicate that this method can effectively get nonlinear information from short (6-7 min) heartbeat series and consequently reflect the degree of heart rate variability, which supplies convenience in clinical application. Finally, a comparison with the traditional time domain method shows that the NAR model method can reflect the complexity of the whole signal and lessen the influence of noise and instability in the signal.
引用
收藏
页码:530 / 534
页数:5
相关论文
共 14 条
  • [1] Detection of nonlinear dynamics in short, noisy time series
    Barahona, M
    Poon, CS
    [J]. NATURE, 1996, 381 (6579) : 215 - 217
  • [2] BOGAERT C, 2001, BASIC CLIN, V90, P142
  • [3] Camm AJ, 1996, CIRCULATION, V93, P1043
  • [4] Detection of chaotic determinism in time series from randomly forced maps
    Chon, KH
    Kanters, JK
    Cohen, RJ
    HolsteinRathlou, NH
    [J]. PHYSICA D, 1997, 99 (04): : 471 - 486
  • [5] FUNDAMENTAL LIMITATIONS FOR ESTIMATING DIMENSIONS AND LYAPUNOV EXPONENTS IN DYNAMIC-SYSTEMS
    ECKMANN, JP
    RUELLE, D
    [J]. PHYSICA D, 1992, 56 (2-3): : 185 - 187
  • [6] GOLDBERGER A L, 1990, Scientific American, V262, P42
  • [7] Guzzetti S, 1996, CARDIOVASC RES, V31, P441
  • [8] HABER R, 1976, IFAC S ID SYS PAR ES, P62
  • [9] 2-DIMENSIONAL MAPPING WITH A STRANGE ATTRACTOR
    HENON, M
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 50 (01) : 69 - 77
  • [10] DETERMINING EMBEDDING DIMENSION FOR PHASE-SPACE RECONSTRUCTION USING A GEOMETRICAL CONSTRUCTION
    KENNEL, MB
    BROWN, R
    ABARBANEL, HDI
    [J]. PHYSICAL REVIEW A, 1992, 45 (06): : 3403 - 3411