The role of driving factors in historical and projected carbon dynamics of upland ecosystems in Alaska

被引:24
作者
Genet, Helene [1 ]
He, Yujie [2 ]
Lyu, Zhou [2 ]
McGuire, A. David [3 ]
Zhuang, Qianlai [2 ]
Clein, Joy [1 ]
D'Amore, David [4 ]
Bennett, Alec [5 ]
Breen, Amy [5 ]
Biles, Frances [4 ]
Euskirchen, Eugenie S. [1 ]
Johnson, Kristofer [6 ]
Kurkowski, Tom [5 ]
Schroder, Svetlana [7 ]
Pastick, Neal [8 ,9 ]
Rupp, T. Scott [5 ]
Wylie, Bruce [10 ]
Zhang, Yujin [11 ]
Zhou, Xiaoping [12 ]
Zhu, Zhiliang [13 ]
机构
[1] Univ Alaska Fairbanks, Inst Arctic Biol, Fairbanks, AK 99775 USA
[2] Purdue Univ, Earth Atmospher & Planetary Sci, W Lafayette, IN 47907 USA
[3] Univ Alaska Fairbanks, Alaska Cooperat Fish & Wildlife Res Unit, US Geol Survey, Fairbanks, AK 99775 USA
[4] US Forest Serv, USDA, Pacific Northwest Res Stn, Juneau, AK 99801 USA
[5] Univ Alaska Fairbanks, Int Arctic Res Ctr, Scenarios Network Alaska & Arctic Planning, Fairbanks, AK 99775 USA
[6] US Forest Serv, USDA, Northern Res Stn, Newtown Sq, Newtown, PA 19073 USA
[7] Univ Washington, Sch Environm & Forest Sci, Seattle, WA 98195 USA
[8] Stinger Ghaffarian Technol Inc, US Geol Survey, Sioux Falls, SD 57198 USA
[9] Univ Minnesota, Dept Forest Resources, St Paul, MN 55108 USA
[10] US Geol Survey, Earth Resources Observat Syst Ctr, Sioux Falls, SD 57198 USA
[11] Chinese Acad Sci, Beijing, Peoples R China
[12] US Forest Serv, USDA, Pacific Northwest Res Stn, Portland, OR 97208 USA
[13] US Geol Survey, Albany, NY 12201 USA
基金
美国国家科学基金会;
关键词
Alaska carbon cycle; atmospheric CO2; carbon balance; climate change; fire; logging; permafrost; soil carbon; upland ecosystem; vegetation productivity; NET PRIMARY PRODUCTIVITY; FINE-ROOT PRODUCTION; ARCTIC TUNDRA; CLIMATE-CHANGE; BOREAL FOREST; SOIL CARBON; FIRE REGIME; PERMAFROST CARBON; SNOW COVER; TERRESTRIAL ECOSYSTEMS;
D O I
10.1002/eap.1641
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
It is important to understand how upland ecosystems of Alaska, which are estimated to occupy 84% of the state (i.e., 1,237,774 km(2)), are influencing and will influence state-wide carbon (C) dynamics in the face of ongoing climate change. We coupled fire disturbance and biogeochemical models to assess the relative effects of changing atmospheric carbon dioxide (CO2), climate, logging and fire regimes on the historical and future C balance of upland ecosystems for the four main Landscape Conservation Cooperatives (LCCs) of Alaska. At the end of the historical period (1950-2009) of our analysis, we estimate that upland ecosystems of Alaska store similar to 50 Pg C (with similar to 90% of the C in soils), and gained 3.26 Tg C/yr. Three of the LCCs had gains in total ecosystem C storage, while the Northwest Boreal LCC lost C (-6.01 Tg C/yr) because of increases in fire activity. Carbon exports from logging affected only the North Pacific LCC and represented less than 1% of the state's net primary production (NPP). The analysis for the future time period (2010-2099) consisted of six simulations driven by climate outputs from two climate models for three emission scenarios. Across the climate scenarios, total ecosystem C storage increased between 19.5 and 66.3 Tg C/yr, which represents 3.4% to 11.7% increase in Alaska upland's storage. We conducted additional simulations to attribute these responses to environmental changes. This analysis showed that atmospheric CO2 fertilization was the main driver of ecosystem C balance. By comparing future simulations with constant and with increasing atmospheric CO2, we estimated that the sensitivity of NPP was 4.8% per 100 ppmv, but NPP becomes less sensitive to CO2 increase throughout the 21st century. Overall, our analyses suggest that the decreasing CO2 sensitivity of NPP and the increasing sensitivity of heterotrophic respiration to air temperature, in addition to the increase in C loss from wildfires weakens the C sink from upland ecosystems of Alaska and will ultimately lead to a source of CO2 to the atmosphere beyond 2100. Therefore, we conclude that the increasing regional C sink we estimate for the 21st century will most likely be transitional.
引用
收藏
页码:5 / 27
页数:23
相关论文
共 137 条
[31]   Importance of recent shifts in soil thermal dynamics on growing season length, productivity, and carbon sequestration in terrestrial high-latitude ecosystems [J].
Euskirchen, ES ;
McGuire, AD ;
Kicklighter, DW ;
Zhuang, Q ;
Clein, JS ;
Dargaville, RJ ;
Dye, DG ;
Kimball, JS ;
McDonald, KC ;
Melillo, JM ;
Romanovsky, VE ;
Smith, NV .
GLOBAL CHANGE BIOLOGY, 2006, 12 (04) :731-750
[32]   Carbon cycle uncertainty in the Alaskan Arctic [J].
Fisher, J. B. ;
Sikka, M. ;
Oechel, W. C. ;
Huntzinger, D. N. ;
Melton, J. R. ;
Koven, C. D. ;
Ahlstrom, A. ;
Arain, M. A. ;
Baker, I. ;
Chen, J. M. ;
Ciais, P. ;
Davidson, C. ;
Dietze, M. ;
El-Masri, B. ;
Hayes, D. ;
Huntingford, C. ;
Jain, A. K. ;
Levy, P. E. ;
Lomas, M. R. ;
Poulter, B. ;
Price, D. ;
Sahoo, A. K. ;
Schaefer, K. ;
Tian, H. ;
Tomelleri, E. ;
Verbeeck, H. ;
Viovy, N. ;
Wania, R. ;
Zeng, N. ;
Miller, C. E. .
BIOGEOSCIENCES, 2014, 11 (15) :4271-4288
[33]   Variability in the emission of carbon-based trace gases from wildfire in the Alaskan boreal forest [J].
French, NHF ;
Kasischke, ES ;
Williams, DG .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2002, 108 (D1)
[34]   Modeling the effects of fire severity and climate warming on active layer thickness and soil carbon storage of black spruce forests across the landscape in interior Alaska [J].
Genet, H. ;
McGuire, A. D. ;
Barrett, K. ;
Breen, A. ;
Euskirchen, E. S. ;
Johnstone, J. F. ;
Kasischke, E. S. ;
Melvin, A. M. ;
Bennett, A. ;
Mack, M. C. ;
Rupp, T. S. ;
Schuur, A. E. G. ;
Turetsky, M. R. ;
Yuan, F. .
ENVIRONMENTAL RESEARCH LETTERS, 2013, 8 (04)
[35]  
Genet H., 2016, Baseline and projected future carbon storage and greenhousegas fluxes in ecosystems of Alaska, P105
[36]   Ecosystem responses to recent climate change and fire disturbance at northern high latitudes: observations and model results contrasting northern Eurasia and North America [J].
Goetz, S. J. ;
Mack, M. C. ;
Gurney, K. R. ;
Randerson, J. T. ;
Houghton, R. A. .
ENVIRONMENTAL RESEARCH LETTERS, 2007, 2 (04)
[37]   Above- and belowground responses of arctic tundra ecosystems to altered soil nutrients and mammalian herbivory [J].
Gough, Laura ;
Moore, John C. ;
Shaver, Gauis R. ;
Simpson, Rodney T. ;
Johnson, David R. .
ECOLOGY, 2012, 93 (07) :1683-1694
[38]   Patterns of NPP, GPP, respiration, and NEP during boreal forest succession [J].
Goulden, M. L. ;
McMillan, A. M. S. ;
Winston, G. C. ;
Rocha, A. V. ;
Manies, K. L. ;
Harden, J. W. ;
Bond-Lamberty, B. P. .
GLOBAL CHANGE BIOLOGY, 2011, 17 (02) :855-871
[39]  
GROISMAN PY, 1994, J CLIMATE, V7, P1633, DOI 10.1175/1520-0442(1994)007<1633:COSCTA>2.0.CO
[40]  
2