共 50 条
Ras pathway inhibition prevents neovascularization by repressing endothelial cell sprouting
被引:60
|作者:
Westenskow, Peter D.
[1
]
Kurihara, Toshihide
[1
]
Aguilar, Edith
[1
]
Scheppke, Elizabeth L.
[1
]
Moreno, Stacey K.
[1
]
Wittgrove, Carli
[1
]
Marchetti, Valentina
[1
]
Michael, Iacovos R.
[2
]
Anand, Sudarshan
[3
]
Nagy, Andras
[2
]
Cheresh, David
[3
]
Friedlander, Martin
[1
]
机构:
[1] Scripps Res Inst, Dept Cell & Mol Biol, La Jolla, CA 92037 USA
[2] Mt Sinai Hosp, Samuel Lunenfeld Res Inst, Toronto, ON M5G 1X5, Canada
[3] Univ Calif San Diego, Dept Pathol, San Diego, CA USA
基金:
日本学术振兴会;
关键词:
OXYGEN-INDUCED RETINOPATHY;
GTPASE-ACTIVATING PROTEIN;
PATHOLOGICAL ANGIOGENESIS;
TUMOR ANGIOGENESIS;
VASCULAR SYSTEM;
MOUSE MODEL;
VEGF-TRAP;
EXPRESSION;
RECEPTOR;
QUANTIFICATION;
D O I:
10.1172/JCI70230
中图分类号:
R-3 [医学研究方法];
R3 [基础医学];
学科分类号:
1001 ;
摘要:
Vascular networks develop from a growing vascular front that responds to VEGF and other guidance cues. Angiogenesis is required for normal tissue function, but, under conditions of stress, inappropriate vascularization can lead to disease. Therefore, inhibition of angiogenic sprouting may prevent neovascularization in patients with blinding neovascular eye diseases, including macular degeneration. VEGF antagonists have therapeutic benefits but also can elicit off-target effects. Here, we found that the Ras pathway, which functions downstream of a wide range of cytokines including VEGF, is active in the growing vascular front of developing and pathological vascular networks. The endogenous Ras inhibitor p120RasGAP was expressed predominately in quiescent VEGF-insensitive endothelial cells and was ectopically downregulated in multiple neovascular models. MicroRNA-132 negatively regulated p120RasGAP expression. Experimental delivery of alpha-miR-132 to developing mouse eyes disrupted tip cell Ras activity and prevented angiogenic sprouting. This strategy prevented ocular neovascularization in multiple rodent models even more potently than the VEGF antagonist, VEGF-trap. Targeting microRNA-132 as a therapeutic strategy may prove useful for treating multiple neovascular diseases of the eye and for preventing vision loss regardless of the neovascular stimulus.
引用
收藏
页码:4900 / 4908
页数:9
相关论文