Connection topology optimization of steel moment frames using metaheuristic algorithms

被引:18
作者
Alberdi, Ryan [1 ]
Murren, Patrick [1 ]
Khandelwal, Kapil [1 ]
机构
[1] Univ Notre Dame, Dept Civil & Env Engg & Earth Sci, Notre Dame, IN 46556 USA
基金
美国国家科学基金会;
关键词
Steel frame optimization; Metaheuristic algorithms; Connection topology optimization; Optimum design; Structural systems; SEARCH; DESIGN;
D O I
10.1016/j.engstruct.2015.06.014
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper details the optimization of steel moment frames in which, in addition to the beam and column sections, the beam-to-column connection type is also variable. In these connection topology optimizations, the optimal trade-off between the lateral stiffness provided by moment connections and lower cost of pin connections is determined by identifying the most efficient arrangement of moment connections. Four metaheuristic algorithms are used to optimize two different frames and their performance is compared. Results indicate that the cost of a frame is minimized when moment connections are arranged in a manner that resembles a global structural system. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:276 / 292
页数:17
相关论文
共 28 条
[1]  
AISC-LRFD, 1999, MAN STEEL CONSTR LOA
[2]   Multi-stage production cost optimization of semi-rigid steel frames using genetic algorithms [J].
Ali, Nizar Bel Hadj ;
Sellami, Mohamed ;
Cutting-Decelle, Anne-Francoise ;
Mangin, Jean-Claude .
ENGINEERING STRUCTURES, 2009, 31 (11) :2766-2778
[3]   DISCRETE-VARIABLE OPTIMAL STRUCTURAL DESIGN USING TABU SEARCH [J].
BLAND, JJ .
STRUCTURAL OPTIMIZATION, 1995, 10 (02) :87-93
[4]  
Burns S.A., 2002, Recent advances in optimal structural design
[5]  
Burns SA, 2002, RECENT ADV OPTIMAL S
[6]   Design of steel frames using ant colony optimization [J].
Camp, CV ;
Bichon, BJ ;
Stovall, SP .
JOURNAL OF STRUCTURAL ENGINEERING, 2005, 131 (03) :369-379
[7]  
Carter CJ, 2000, EC STEEL MODERN STEE, P40
[8]  
Crisfield M.A.., 1991, FINITE ELEMENTS SOLU
[9]  
de Souza R.M., 2000, FORCE BASED FINITE E
[10]  
Degertekin SO, 2007, STRUCT MULTIDISCIP O, V34, P347, DOI [10.1007/s00158-007-0096-4, 10.1007/S00158-007-0096-4]